The History of Chemistry (Vol.1&2). Thomas Thomson. Читать онлайн. Newlib. NEWLIB.NET

Автор: Thomas Thomson
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 4064066399887
Скачать книгу
from the tenour of the stranger’s conversation, that he intended to ask the loan of money from him. But instead of this, the Italian asked him if he was acquainted with any goldsmith, whose bellows and other utensils they might be permitted to use, and who would not refuse to supply them with the different articles requisite for a particular process which he wanted to perform. M. Gros named a M. Bureau, to whom the Italian immediately repaired. He readily furnished crucibles, pure tin, quicksilver, and the other things required by the Italian. The goldsmith left his workshop, that the Italian might be under the less restraint, leaving M. Gros, with one of his own workmen, as an attendant. The Italian put a quantity of tin into one crucible, and a quantity of quicksilver into another. The tin was melted in the fire and the mercury heated. It was then poured into the melted tin, and at the same time a red powder enclosed in wax was projected into the amalgam. An agitation took place, and a great deal of smoke was exhaled from the crucible; but this speedily subsided, and the whole being poured out, formed six heavy ingots, having the colour of gold. The goldsmith was called in by the Italian, and requested to make a rigid examination of the smallest of these ingots. The goldsmith, not content with the touchstone and the application of aqua fortis, exposed the metal on the cupel with lead, and fused it with antimony, but it sustained no loss. He found it possessed of the ductility and specific gravity of gold; and full of admiration, he exclaimed that he had never worked before upon gold so perfectly pure. The Italian made him a present of the smallest ingot as a recompence, and then, accompanied by M. Gros, he repaired to the Mint, where he received from M. Bacuet, the mintmaster, a quantity of Spanish gold coin, equal in weight to the ingots which he had brought. To M. Gros he made a present of twenty pieces, on account of the attention that he had paid to him; and, after paying his bill at the inn, he added fifteen pieces more, to serve to entertain M. Gros and M. Bureau for some days, and in the mean time he ordered a supper, that he might, on his return, have the pleasure of supping with these two gentlemen. He went out, but never returned, leaving behind him the greatest regret and admiration. It is needless to add, that M. Gros and M. Bureau continued to enjoy themselves at the inn till the fifteen pieces, which the stranger had left, were exhausted.”11

      Mangetus gives also the following relation, which he states upon the authority of an English bishop, who communicated it to him in the year 1685, and at the same time gave him about half an ounce of the gold which the alchymist had made:

      A stranger, meanly dressed, went to Mr. Boyle, and after conversing for some time about chemical processes, requested him to furnish him with antimony, and some other common metallic substances, which then fortunately happened to be in Mr. Boyle’s laboratory. These were put into a crucible, which was then placed in a melting-furnace. As soon as these metals were fused, the stranger showed a powder to the attendants, which he projected into the crucible, and instantly went out, directing the servants to allow the crucible to remain in the furnace till the fire went out of its own accord, and promising at the same time to return in a few hours. But, as he never fulfilled this promise, Boyle ordered the cover to be taken off the crucible, and found that it contained a yellow-coloured metal, possessing all the properties of pure gold, and only a little lighter than the weight of the materials originally put into the crucible.12

      The following strange story is related by Helvetius, physician to the Prince of Orange, in his Vitulus Aureus: Helvetius was a disbeliever of the philosopher’s stone, and the universal medicine, and even turned Sir Kenelm Digby’s sympathetic powder into ridicule. On the 27th of December, 1666, a stranger called upon him, and after conversing for some time about a universal medicine, showed a yellow powder, which he affirmed to be the philosopher’s stone, and at the same time five large plates of gold, which had been made by means of it. Helvetius earnestly entreated that he would give him a little of this powder, or at least that he would make a trial of its power; but the stranger refused, promising however to return in six weeks. He returned accordingly, and after much entreaty he gave to Helvetius a piece of the stone, not larger than the size of a rape-seed. When Helvetius expressed his doubt whether so small a portion would be sufficient to convert four grains of lead into gold, the adept broke off one half of it, and assured him that what remained was more than sufficient for the purpose. Helvetius, during the first conference, had concealed a little of the stone below his nail. This he threw into melted lead, but it was almost all driven off in smoke, leaving only a vitreous earth. When he mentioned this circumstance, the stranger informed him that the powder must be enclosed in wax, before it be thrown into the melted lead, lest it should be injured by the smoke of the lead. The stranger promised to return next day, and show him the method of making the projection; but having failed to make his appearance, Helvetius, in the presence of his wife and son, put six drachms of lead into a crucible, and as soon as it was melted he threw into it the fragment of philosopher’s stone in his possession, previously covered over with wax. The crucible was now covered with its lid, and left for a quarter of an hour in the fire, at the end of which time he found the whole lead converted into gold. The colour was at first a deep green; being poured into a conical vessel, it assumed a blood-red colour; but when cold, it acquired the true tint of gold. Being examined by a goldsmith, he considered it as pure gold. He requested Porelius, who had the charge of the Dutch mint, to try its value. Two drachms of it being subjected to quartation, and solution in aqua fortis, were found to have increased in weight by two scruples. This increase was doubtless owing to the silver, which still remained enveloped in the gold, after the action of the aqua fortis. To endeavour to separate the silver more completely, the gold was again fused with seven times its weight of antimony, and treated in the usual manner; but no alteration took place in the weight.13

      It would be easy to relate many other similar narratives; but the three which I have given are the best authenticated of any that I am acquainted with. The reader will observe, that they are all stated on the authority, not of the persons who were the actors, but of others to whom they related them; and some of these, as the English bishop, perhaps not very familiar with chemical processes, and therefore liable to leave out or misstate some essential particulars. The evidence, therefore, though the best that can be got, is not sufficient to authenticate these wonderful stories. A little latent vanity might easily induce the narrators to suppress or alter some particulars, which, if known, would have stripped the statements of every thing marvellous which they contain, and let us into the secret of the origin of the gold, which these alchymists boasted that they had fabricated. Whoever will read the statements of Paracelsus, respecting his knowledge of the philosopher’s stone, which he applied not to the formation of gold but to medicine, or whoever will examine his formulas for making the stone, will easily satisfy himself that Paracelsus possessed no real knowledge on the subject.14

      But to convey as precise ideas on this subject as possible, it may be worth while to state a few of the methods by which the alchymists persuaded themselves that they could convert the baser metals into gold.

      In the year 1694 an old gentleman called upon Mr. Wilson, at that time a chemist in London, and informed him that at last, after forty years’ search, he had met with an ample recompence for all his trouble and expenses. This he confirmed with some oaths and imprecations; but, considering his great weakness and age, he looked upon himself as incapable to undergo the fatigues of the process. “I have here,” says he, “a piece of sol (gold) that I made from silver, about four years ago, and I cannot trust any man but you with so rare a secret. We will share equally the charges and profit, which will render us wealthy enough to command the world.” The nature of the process being stated, Mr. Wilson thought it not unreasonable, especially as he aimed at no peculiar advantage for himself. He accordingly put it to the trial in the following manner:

      1. Twelve ounces of Japan copper were beat into thin plates, and laid stratum super stratum with three ounces of flowers of sulphur, in a crucible. It was exposed in a melting-furnace to a gentle heat, till the sulphureous flames expired. When cold, the æs ustum (sulphuret of copper) was pounded, and stratified again; and this process was repeated five times. Mr. Wilson does not inform us whether the powder was mixed with flowers of sulphur every time that it was heated; but this must have been the case, otherwise the sulphuret would have been again converted into metallic copper, which would have melted into a mass. By this first process, then, bisulphuret of copper was formed, composed of equal weights of sulphur and copper.

      2. Six pounds of iron wire were put into a large glass body, and twelve