Bio-Based Epoxy Polymers, Blends, and Composites. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9783527823611
Скачать книгу
Czub, P. (2019). eXPRESS Polym. Lett. 13 (7): 642–655.

      24 24 Lewis, M. and Rohrer, J.F. (1977). Cured epoxy resins. US Patent 4, 040, 994, assigned to Unitech Chemical Inc., August 9, 1977.

      25 25 Eicken, U., Gorzinski, M., Birnbrich, P., and Tamcke, T., Modified resins made from the reaction of epoxidized esters and resin acids. US Patent 5, 770, 662, assigned to Henkel KGaA, June 23, 1998.

      26 26 Miyagawa, H., Mohanty, A.K., Misra, M., and Drzal, L.T. (2004). Macromol. Mater. Eng. 289 (7): 629–635.

      27 27 Miyagawa, H., Mohanty, A.K., Misra, M., and Drzal, L.T. (2004). Macromol. Mater. Eng. 289 (7): 636–641.

      28 28 Miyagawa, H., Misra, M., Drzal, L.T., and Mohanty, A.K. (2005). Polym. Eng. Sci. 45 (4): 487–495.

      29 29 Park, S.J., Jin, F.L., and Lee, J.R. (2004). Mater. Sci. Eng., A 374, 1–2: 109–114.

      30 30 Park, S.J., Jin, F.L., and Lee, J.R. (2004). Macromol. Chem. Phys. 205 (15): 2048–2054.

      31 31 Jin, F.L. and Park, S.J. (2008). Mater. Sci. Eng., A 478, 1‐2: 402–405.

      32 32 Ratna, D. and Banthia, A.K. (2000). J. Adhes. Sci. Technol. 14 (1): 15–25.

      33 33 Kar, S. and Banthia, A.K. (2004). Mater. Manuf. Processes 19 (3): 459–474.

      34 34 Zhu, J., Chandrashekhara, K., Flanigan, V., and Kapila, S. (2004). J. Appl. Polym. Sci. 91 (6): 3513–3518.

      35 35 Liang, G. and Chandrashekhara, K. (2006). J. Appl. Polym. Sci. 102: 3168.

      36 36 Shabeer, A., Garg, A., Sundararaman, S. et al. (2005). J. Appl. Polym. Sci. 98 (4): 1772–1780.

      37 37 Czub, P. and Franek, I. (2013). Polimery 58 (2): 135–139.

      38 38 Crivello, J.V. and Narayan, R. (1992). Chem. Mater. 4 (3): 692–699.

      39 39 Thames, S.F. and Yu, H. (1999). Surf. Coat. Technol. 115 (2–3): 208–214.

      40 40 Thames, S.F., Yu, H., and Subramanian, R. (2000). J. Appl. Polym. Sci. 77 (1): 8–13.

      41 41 Wan Rosli, W.D., Kumar, R.N., Mek Zah, S., and Hilmi, M.M. (2003). Eur. Polym. J. 39 (3): 593–600.

      42 42 Samuelsson, J., Sundell, P.E., and Johansson, M. (2004). Prog. Org. Coat. 50 (3): 193–198.

      43 43 Chen, J., Soucek, M.D., Simonsick, W.J., and Celikay, R.W. (2002). Polymer 43 (20): 5379–5389.

      44 44 Zong, Z., Soucek, M.D., Liu, Y., and Hu, J. (2003). J. Polym. Sci, Part A: Polym. Chem. 41 (21): 3440–3456.

      45 45 Zong, Z., He, J., and Soucek, M.D. (2005). Prog. Org. Coat. 53 (2): 83–90.

      46 46 Zou, K. and Soucek, M.D. (2005). Macromol. Chem. Phys. 206 (9): 967–975.

      47 47 Crivello, J.V., Narayan, R., and Sternstein, S.S. (1997). J. Appl. Polym. Sci. 64 (11): 2073–2087.

      48 48 Achyuthan, K.E., Achyuthan, A.M., Adams, P.D. et al. (2010). Molecules 15 (12): 8641–8688.

      49 49 Laurichesse, S. and Avérous, L. (2014). Prog. Polym. Sci. 39 (7): 1266–1290.

      50 50 Azadi, P., Inderwildi, O.R., Farnood, R., and King, D.A. (2013). Renewable Sustainable Energy Rev. 21: 506–523.

      51 51 Ghaffar, S.H. and Fan, M. (2014). Int. J. Adhes. Adhes. 48: 92–101.

      52 52 Cao, L., Zhang, C., Chen, H. et al. (2017). Bioresour. Technol. 245: 1184–1193.

      53 53 Gillet, S., Petitjean, L., Aguedo, M. et al. (2017). Bioresour. Technol. 233: 216–226.

      54 54 Morreel, K., Dima, O., Kim, H. et al. (2010). Physiology 153 (4): 1464–1478.

      55 55 Wang, H., Pu, Y., Ragauskas, A., and Yang, B. (2019). Bioresour. Technol. 271: 449–461.

      56 56 Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J. et al. (2019). Bioresour. Technol. 271: 462–472.

      57 57 Agarwal, A., Rana, M., and Park, J.H. (2018). Fuel Process. Technol. 181: 115–132.

      58 58 Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., and Weckhuysen, B.M. (2010). Chem. Rev. 110 (6): 3552–3599.

      59 59 Watkins, D., Nuruddin, M., Hosur, M. et al. (2015). J. Mater. Res. Technol. 4 (1): 26–32.

      60 60 Zhang, J., Deng, H., Lin, L. et al. (2010). Bioresour. Technol. 101 (7): 2311–2316.

      61 61 Li, M.F., Sun, S.N., Xu, F., and Sun, R.C. (2012). Sep. Purif. Technol. 101: 18–25.

      62 62 Binder, J.B., Gray, M.J., White, J.F. et al. (2009). Biomass Bioenergy 33 (9): 1122–1130.

      63 63 Lourençon, T.V., Hansel, F.A., da Silva, T.A. et al. (2015). Sep. Purif. Technol. 154: 82–88.

      64 64 Sun, G., Sun, H., Liu, Y. et al. (2007). Polymer 48 (1): 330–337.

      65 65 Upton, B.M. and Kasko, A.M. (2015). Chem. Rev. 116 (4): 2275–2306.

      66 66 Koike, T. (2012). Polym. Eng. Sci. 52 (4): 701–717.

      67 67 Xin, J., Li, M., Li, R. et al. (2016). ACS Sustainable Chem. Eng. 4 (5): 2754–2761.

      68 68 Hernandez, E.D., Bassett, A.W., Sadler, J.M. et al. (2016). ACS Sustainable Chem. Eng. 4 (8): 4328–4339.

      69 69 Ye, Y., Zhang, Y., Fan, J., and Chang, J. (2011). Ind. Eng. Chem. Res. 51 (1): 103–110.

      70 70 Salanti, A., Orlandi, M., Tolppa, E.L., and Zoia, L. (2010). Int. J. Mol. Sci. 11 (3): 912–926.

      71 71 van de Pas, D.J. and Torr, K.M. (2017). Biomacromolecules 18 (8): 2640–2648.

      72 72 Ferdosian, F., Yuan, Z., Anderson, M., and Xu, C.C. (2016). J. Anal. Appl. Pyrolysis 119: 124–132.

      73 73 Shiraishi, N. (1989). ACS Symp. Ser. 397: 488–495.

      74 74 Stanzione, J.F. III Giangiulio, P.A., Sadler, J.M. et al. (2013). ACS Sustainable Chem. Eng. 1 (4): 419–426.

      75 75 Enjoji, M., Yamamoto, A., and Shibata, M. (2015). J. Appl. Polym. Sci. 132 (4): 41347–41347.

      76 76 Kaya, İ., Doğan, F., and Gül, M. (2011). J. Appl. Polym. Sci. 121 (6): 3211–3222.

      77 77 Parsell, T., Yohe, S., Degenstein, J. et al. (2015). Green Chem. 17 (3): 1492–1499.

      78 78 Hirose, S., Hatakeyama, T., and Hatakeyama, H. (2003). Macromol. Symp. 197 (1): 157–170.

      79 79 Walton, N.J., Mayer, M.J., and Narbad, A. (2003). Phytochemistry 63: 505–515.

      80 80 Wynberg, H. (1960). Chem. Rev. 60 (2): 169–184.

      81 81 Fatiadi, A. and Schaffer, R. (1974). J. Res. Natl. Bur. Stand. Sect. A 78A (3): 411–412.

      82 82 Kamlet, J. (1953). Manufacture of vanillin and its homologues. US Patent 2, 640, 083, assigned to Mathieson Chemical Corporation and Olin Corporation, May 26, 1953.

      83 83 Bots, R.H. (1927). Process of manufacturing vvanillin. US Patent 1, 643, 804, September 27, 1927.

      84 84 Fiecchi, A., Nano, G.M., Cabella, P., and Cicognani, G. (1970). Method of preparing vanillin from eugenol. US Patent 3, 544, 621, assigned to Collins Chemical Corporation Incorporation, December 1, 1970.

      85 85 Lampman, G.M., Andrews, J., Bratz, W. et al. (1977). J. Chem. Educ. 54 (12): 776–778.

      86 86 Hocking, M.B. (1997). J. Chem. Educ. 74 (9): 1055–1059.

      87 87 Bjørsvik, H.R. and Minisci, F. (1999). Org. Process Res. Dev. 3 (5): 330–340.

      88 88 Duffey, S.S., Aldrich, J.R., and Blum, M.S. (1977). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 56 (2): 101–102.

      89 89 Furuya, T., Kuroiwa, M., and Kino, K. (2017). J. Biotechnol. 243 (10): 25–28.

      90 90 Schmidt, C.G., Gonçalves, L.M., Prietto, L. et al. (2014). Food Chem. 146: 371–377.

      91 91 Bomgardner, M.M. (2016). Chem. Eng. News 94 (36): 38–42.

      92 92 Havkin‐Frenkel, D. and Belanger, F.C. (2016). Biotechnological production of vanillin. In: