Bio-Based Epoxy Polymers, Blends, and Composites. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9783527823611
Скачать книгу
isosorbide (Figure 1.64) and it could be used for curing of diglycidyl ether of isosorbide giving the completely bio‐based epoxy system [150].

Chemical reaction of the synthesis of the isosorbide-based cross-linking agent. Chemical reaction of the synthesis of the isosorbide-based cross-linking agent via cyanoethylation step.
Cured samples Tg (°C) E at Tg+30°C (MPa) Tensile strength (MPa) Elongation at break (%) Impact strength (kJ/m2)
MMY100 61.59 19.06 48.74 7.5 8.55
MMY75/CMMY25 58.03 19.00 42.11 6.5 13.87
MMY50/CMMY50 54.03 4.18 35.55 6.6 17.29
MMY25/CMMY75 45.09 2.72 11.11 259.4 62.51
CMMY100 15.14 1.11 0.43 565.8 Unbroken

      As can be seen from the examples presented above, it is possible to obtain not only epoxy resins from raw materials of natural origin but also cross‐linking agents for them. Interestingly, it is also possible to synthesize completely bio‐derived epoxy systems. Both the epoxy resins based on bisphenol A, as well as cross‐linked with curing agents on the basis of raw materials of natural origin, and the fully epoxy biosystems are characterized by very good final properties.

Chemical reaction of the synthesis of bio-based epoxy curing agent derived from myrcene and castor oil.

      1 1 Derksen, J.T.P., Cuperus, F.P., and Kolser, P. (1996). Prog. Org. Coat. 27 (1–4): 45–53.

      2 2 Sharma, V. and Kundu, P.P. (2006). Prog. Polym. Sci. 31 (11): 983–1008.

      3 3 Köckritz, A. and Martin, A. (2008). Eur. J. Lipid Sci. Technol. 110: 812–824.

      4 4 Hilker, I., Bothe, D., Prüss, J., and Warnecke, H.‐J. (2001). Chem. Eng. Sci. 56: 427–432.

      5 5 Chen, J., de Liedekerke Beaufort, M., Gyurik, L. et al. (2019). Green Chem. 21: 2436–2447.

      6 6 Sienkiewicz, A.M. and Czub, P. (2016). Ind. Crops Prod. 83: 755–773.

      7 7 Chua, S.Ch., Xu, X., and Guo, Z. (2012). Process Biochem. 47: 1439–1451.

      8 8 Gan, L.H., Goh, S.H., and Ooi, K.S. (1992). J. Am. Oil Chem. Soc. 69 (4): 347–351.

      9 9 Faria‐Machado, A.F., Altenhofen da Silva, M., Vieira, M.G.A., and Beppu, M.M. (2013). J. Appl. Polym. Sci. 127 (5): 3543–3549.

      10 10 Walton, H.W. and Nevin, Ch.S. (1965). Reaction of half esters of an alpha, beta‐ethylenically unsaturated‐alpha, beta‐dicarboxylic acid with a vicinal epoxy compound and products thereof. US Patent 3, 190, 899, assigned to A.E. Staley Manufacturing Company, June 22, 1965.

      11 11 Panchal, T.M., Patel, A., Chauhan, D.D. et al. (2017). Renewable Sustainable Energy Rev. 70: 65–70.

      12 12 Soni, S. and Agarwal, M. (2014). J. Green Chem. Lett. Rev. 7 (4): 359–382.

      13 13 Czub, P. (2006). Macromol. Symp. 242 (1): 60–64.

      14 14 Czub, P. (2006). Macromol. Symp. 245–246 (1): 533–538.

      15 15 Wear, R.L. (1960). Aromatic epoxidized polyester and method of making. US Patent 2, 944, 035, assigned to Minnesota Mining & Manufacturing Company, July 5, 1960.

      16 16 Afolabi, O.A., Aluko, M.E., Wang, G.C. et al. (1989). J. Am. Oil Chem. Soc. 66 (7): 983–985.

      17 17 Vijayalakshmi, P., Rao, T.Ch., Kale, V. et al. (1992). Polymer 33 (15): 3252–3256.

      18 18 Park, S.J., Jin, F.L., Lee, J.R., and Shin, J.S. (2005). Eur. Polym. J. 41: 231–237.

      19 19 Boquillon, N. and Fringant, C. (2000). Polymer 41 (24): 8603–8613.

      20 20 Czub, P. (2009). Polym. Adv. Technol. 20 (3): 194–208.

      21 21 Czub, P. (2009). Macromol. Symp.