Power Electronics-Enabled Autonomous Power Systems. Qing-Chang Zhong. Читать онлайн. Newlib. NEWLIB.NET

Автор: Qing-Chang Zhong
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781118803509
Скачать книгу
Introduction 19.2 Control Framework with a Three‐port Converter 19.3 An Illustrative Implementation with the ‐converter 19.4 Experimental Results 19.5 Summary 20 Current‐limiting Universal Droop Controller 20.1 Introduction 20.2 System Modeling 20.3 Control Design 20.4 System Analysis 20.5 Practical Implementation 20.6 Operation under Grid Variations and Faults 20.7 Experimental Results 20.8 Summary

      13  Part IV: 3G VSM: Cybersync Machines 21 Cybersync Machines 21.1 Introduction 21.2 Passivity and Port‐Hamiltonian Systems 21.3 System Modeling 21.4 Control Framework 21.5 Passivity of the Controller 21.6 Passivity of the Closed‐loop System 21.7 Sample Implementations for Blocks and 21.8 Self‐Synchronization and Power Regulation 21.9 Simulation Results 21.10 Experimental Results 21.11 Summary

      14  Part V: Case Studies 22 A Single‐node System 22.1 SYNDEM Smart Grid Research and Educational Kit 22.2 Details of the Single‐Node SYNDEM System 22.3 Summary 23 A 100% Power Electronics Based SYNDEM Smart Grid Testbed 23.1 Description of the Testbed 23.2 Experimental Results 23.3 Summary 24 A Home Grid 24.1 Description of the Home Grid 24.2 Results from Field Operations 24.3 Unexpected Problems Emerged During the Field Trial 24.4 Summary 25 Texas Panhandle Wind Power System 25.1 Geographical Description 25.2 System Structure 25.3 Main Challenges 25.4 Overview of Control Strategies Compared 25.5 Simulation Results 25.6 Summary and Conclusions

      15  Bibliography

      16  Index

      17  End User License Agreement

      List of Tables

      1 Chapter 1Table 1.1 Comparison of today's grids, smart grids, and next‐generation smart gr...

      2 Chapter 2Table 2.1 Machines that power the industrial revolutions.

      3 Chapter 3Table 3.1 The electrical‐mechanical analogy based on the force–current analogy.

      4 Chapter 4Table 4.1 Parameters of the synchronverter for simulations.Table 4.2 Parameters of VSG.Table 4.3 Parameters of VSG2.

      5 Chapter 5Table 5.1 Parameters of the rectifier under simulation.

      6 Chapter 6Table 6.1 Parameters of a PMSG wind turbine system.Table 6.2 GSC control parameters.Table 6.3 RSC control parameters.

      7 Chapter 7Table 7.1 Comparison of different control strategies for AC VSDs.Table 7.2 Parameters of the motor.

      8 Chapter 8Table 8.1 Operation modes of a self‐synchronized synchronverter.Table 8.2 Parameters used in simulations and experiments.Table 8.3 Impact on the complexity of the overall controller and the demand for ...

      9 Chapter 9Table 9.1 Parameters of the rectifier.Table 9.2 Parameters for controlling the DC‐bus voltage.Table 9.3 Parameters for controlling the the power.

      10 Chapter 10Table 10.1 Comparison of different wind power generation systems.Table 10.2 Parameters of the DFIG‐VSG simulated.Table 10.3 Parameters of the experimental DFIG system.

      11 Chapter 11Table 11.1 Operation modes of the PV inverter.Table 11.2 Parameters of the system.

      12 Chapter 12Table 12.1 Operation modes of a STATCOM.

      13 Chapter 13Table 13.1 Parameters of a synchronverter.

      14 Chapter 14Table 14.1 Parameters of the system under simulation.

      15 Chapter 15Table 15.1 Operation modes.Table 15.2 Parameters of the inverter.

      16 Chapter 17Table 17.1 Droop controllers for L‐, R‐, C‐,

‐, and
‐inverters. Table 17.2 Steady‐state performance of the three inverters in parallel operat...

      17 Chapter 18Table 18.1 Operation modes of the self‐synchronized universal droop controlle...Table 18.2 Parameters of the inverter.Table 18.3 Parameters of