Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP. Bhisham C. Gupta. Читать онлайн. Newlib. NEWLIB.NET

Автор: Bhisham C. Gupta
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119516620
Скачать книгу
sampling norms are followed. Another example of stratified random sampling in manufacturing occurs when samples are taken of products that are produced in different batches; here, products produced in different batches constitute the different strata.

      A third kind of sampling design is systematic random sampling. The systematic random sampling procedure is the easiest one. This sampling scheme is particularly useful in manufacturing processes, when the sampling is done from a continuously operating assembly line. Under this scheme, a first item is selected randomly and thereafter every imagesth images item manufactured is selected until we have a sample of the desired size (images). Systematic sampling is not only easy to employ but, under certain conditions, is also more precise than simple random sampling.

      The fourth and last sampling design is cluster random sampling. In cluster sampling, each sampling unit is a group of smaller units. In the manufacturing environment, this sampling scheme is particularly useful since it is difficult to prepare a list of each part that constitutes a frame. On the other hand, it may be easier to prepare a list of boxes in which each box contains many parts. Thus, in this case, a cluster random sample is merely a simple random sample of these boxes. Another advantage of cluster sampling is that by selecting a simple random sample of only a few clusters, we can in fact have quite a large sample of smaller units. Such sampling is achieved at minimum cost, since both preparing the frame and taking the sample are much more economical. In preparing any frame, we must define precisely the characteristic of interest or variable, where a variable may be defined as follows:

      Definition 2.1.7

      A variable is a characteristic of interest that may take different values for different elements.

      For example, an instructor is interested in finding the ages, heights, weights, GPA, gender, and family incomes of all the students in her engineering class. Thus, in this example, the variables (characteristics of interest) are ages, heights, weights, GPA, gender, and family incomes.

       Qualitative

       Quantitative

      The classification of data as nominal, ordinal, interval, and ratio is arranged in the order of the amount of information they can provide. Nominal data provide minimum information, whereas ratio data provide maximum information.

Tree diagram displaying “Statistical data” branching to “Qualitative” and “Quantitative,” with “Qualitative” branching to “Nominal” and “Ordinal” and “Quantitative” branching to “Interval” and “Ratio.”

      2.2.1 Nominal Data

      As previously mentioned, nominal data contain the smallest amount of information. Only symbols are used to label categories of a population. For example, production part numbers with a 2003 prefix are nominal data, wherein the 2003 prefix indicates only that the parts were produced in 2003 (in this case, the year 2003 serves as the category). No arithmetic operation, such as addition, subtraction, multiplication, or division, can be performed on numbers representing nominal data. As another example, jersey numbers of baseball, football, or soccer players are nominal. Thus, adding any two jersey numbers and comparing with another number makes no sense. Other examples of nominal data are ID numbers of workers, account numbers used by a financial institution, ZIP codes, telephone numbers, sex, or color.

      2.2.2 Ordinal Data

      Other examples of ordinal data are represented by geographical regions, say designated as A, B, C, and D for shipping purposes, or preference of vendors who can be called upon for service, or skill ratings of certain workers of a company, or in electronics engineering, the color‐coded resistors, which represent ascending order data.

      2.2.3 Interval Data

      Interval data are numerical data, more informative than nominal and ordinal data but less informative than ratio data. A typical example of interval data is temperature (in Celsius and Fahrenheit). Arithmetic operations of addition and subtraction are applicable, but multiplication and division are not applicable. For example, the temperature of three consecutive parts A, B, and C during a selected step in a manufacturing process are imagesF, imagesF, and imagesF, respectively. Then we can say the temperature difference between parts A and B is different from the difference between parts B and C. Also we can say that part B is warmer than part A and part C is warmer than part A, but cooler than part B. However, it is physically meaningless to say that part B is three times as warm as part A and twice as warm as part C. Moreover, in interval data, zero does not have the conventional meaning of nothingness; it is just an arbitrary point on the scale of measurement. For instance, imagesF and imagesC (=imagesF) have different values, and they are in fact the arbitrary points on different scales of measurements. Other examples of interval data are year in which a part is produced, students' numeric grades on a test, and date of birth.

      2.2.4 Ratio Data

      Ratio data are also numerical data that have the potential to produce the most meaningful information of all data types. All arithmetic operations are applicable on this type of data. Numerous examples of this type of data exist, such as height, weight, length of rods, diameter of a ball bearing, RPM of a motor, number of employees in a company, hourly wages, and annual growth rate of a company. In ratio data, the number zero equates to nothingness. In other words, the number zero means absence of the characteristics of interest.