Как мы учимся. Почему мозг учится лучше, чем любая машина… пока. Станислас Деан. Читать онлайн. Newlib. NEWLIB.NET

Автор: Станислас Деан
Издательство: Эксмо
Серия: Книги, которые сделают вас еще умнее
Жанр произведения: Биология
Год издания: 2020
isbn: 978-5-04-113024-4
Скачать книгу
это позволяет машине исследовать новые решения, не тратя слишком много времени на разного рода «авантюры».

      В основе другого алгоритма лежит отжиг – один из видов термической обработки, которым издавна пользовались кузнецы и ремесленники для оптимизации свойств металла. Метод отжига позволяет получить исключительно прочный клинок и состоит в многократном нагревании сплава при постепенно понижающихся температурах. Это повышает вероятность того, что атомы займут правильное положение. Недавно суть этого процесса была успешно перенесена в информатику: алгоритм имитации отжига вносит случайные изменения в параметры при постепенном понижении виртуальной «температуры». Вероятность случайного события высока в начале, а затем начинает снижаться, пока система не достигает оптимальной конфигурации.

      Ученые обнаружили, что все эти приемы чрезвычайно эффективны – а значит, не исключено, что в ходе эволюции некоторые из них были «встроены» в наш мозг. Случайный поиск, стохастическое любопытство и зашумленные нейроны – все это играет важную роль в научении у Homo sapiens. И в игре «камень, ножницы, бумага», и в джазовой импровизации, и в анализе возможных решений математической задачи случайность есть один из важнейших компонентов решения. Как мы увидим ниже, всякий раз, когда дети переходят в режим обучения – то есть когда они играют, – они исследуют десятки возможностей, причем зачастую делают это беспорядочно, наобум. Ночью их мозг продолжает жонглировать идеями, пока не натыкается на ту, которая лучше всего объясняет пережитое в течение дня. В третьей части этой книги мы еще вернемся к полуслучайному алгоритму, который отвечает за ненасытное любопытство детей – и тех счастливых взрослых, которым удалось сохранить ум ребенка.

      Научение – это оптимизация функции вознаграждения

      Помните систему LeNet Лекуна, которая распознает формы цифр? Чтобы этот тип искусственной нейросети мог учиться, его необходимо обеспечить правильными ответами. Иными словами, сеть должна знать, какой из десяти возможных цифр соответствует каждое введенное изображение. Для исправления ошибок система должна вычислить разницу между своим и правильным ответами. Данная процедура получила название «обучения с учителем»: некто вне системы знает решение и пытается научить машину. Метод достаточно эффективный, однако следует отметить, что ситуация, в которой правильный ответ известен заранее, – большая редкость. Когда дети учатся ходить, никто не говорит им, какие именно мышцы нужно сокращать; их просто поощряют пробовать снова и снова, пока они не перестают падать. Другими словами, малыши учатся исключительно на основе оценки результата: я упал или же мне удалось наконец пересечь комнату.

      С той же проблемой «обучения без учителя» сталкивается и искусственный интеллект. Например, когда машина учится играть в видеоигру, перед ней ставят одну-единственную задачу – набрать максимальное количество очков. Никто