Стараясь минимизировать ошибки, алгоритм градиентного спуска обнаружил, что эти формы лучше всего подходят для классификации образов. Однако, если бы та же самая сеть получала на входе отрывки из книг или нотные листы, она бы настроилась иначе и научилась распознавать буквы, ноты или любые другие фигуры, распространенные в новой среде. Например, на цветной иллюстрации 3 показано, как сеть такого типа самоорганизуется для распознавания тысяч рукописных цифр8. На самом низком уровне данные смешаны: одни изображения внешне похожи, но представляют собой разные цифры (скажем, 3 и 8); другие, наоборот, выглядят по-разному, но в действительности обозначают одно и то же (цифру 8, например, каждый пишет по-своему – у кого-то верхний контур замкнут, у кого-то не замкнут и т.д.). На каждом этапе степень абстракции возрастает, пока все варианты одного и того же знака не будут сгруппированы вместе. Посредством процедуры сокращения ошибок искусственная сеть обнаруживает иерархию признаков, наиболее важных для распознавания рукописных цифр. Примечательно, что само по себе исправление ошибок позволяет обнаружить целый ряд подсказок, облегчающих решение поставленной задачи.
Концепция обучения путем обратного распространения ошибки лежит в основе многих современных компьютерных приложений. Это рабочая лошадка, благодаря которой смартфон умеет распознавать ваш голос, а умный автомобиль – «видеть» пешеходов и дорожные знаки. Весьма вероятно, что наш мозг тоже использует ту или иную ее версию. Впрочем, метод обратного распространения ошибки может принимать разные формы. За последние тридцать лет в области искусственного интеллекта достигнут невероятный прогресс; исследователи обнаружили множество приемов, облегчающих обучение. Ниже мы рассмотрим их более подробно – оказывается, они многое могут рассказать о нас самих и о том, как мы учимся.
Научение – это исследование пространства возможностей
Одна из проблем, связанных с описанной выше процедурой коррекции ошибок, заключается в том, что система может зациклиться на неоптимальных параметрах. Представьте мяч для гольфа, который всегда катится под уклон. Допустим, прямо сейчас он движется по склону холма. Если в какой-то момент он попадет в ямку или в углубление, то уже никогда не достигнет его подножия – низшей точки ландшафта, абсолютного оптимума. Нечто подобное может случиться и с алгоритмом градиентного спуска, который иногда застревает в точке «локального минимума». «Локальный минимум» – своеобразный колодец в пространстве параметров, ловушка, из которой нельзя выбраться. Как только это происходит, обучение