All of this has profound implications for human systems engineering. While a premium continues to be placed on human‐centered design focusing on the direct relationship between systems and their users, human systems considerations have expanded in this age of connectivity putting new demands on systems engineers as they factor human systems considerations into engineering endeavors.
We as systems engineers are no longer just expected to ensure that our systems are usable by an individual, but we are also expected to integrate users into complex distributed systems of systems where the users are part of the systems of systems and their behavior is part of the larger system of systems dynamics.
Systems engineers are no longer just expected to design systems, so they have value for the users but increasingly are asked to build systems that also bring value to the system owners through generation of data to support other aspects of the enterprise or to influence people’s economic, political, or social behavior.
Particularly in safety critical situations, it is no longer enough for systems engineers to design systems that enable people to operate systems to meet their immediate needs, but as these systems are part of a larger dynamic environment, a growing need exists to provide sufficient situational awareness to understand the impacts individual actions may have on other systems and people in the larger systems of systems.
Finally, as systems take on functions that had in the past been done by people, there is an increased emphasis on developing approaches to human systems teaming, a challenge heightened by the increased use of machine learning, where the balance between human and systems may shift over time based on experience.
These changes make this book both timely and important. With the framework provided by Handley in the opening chapter to the research agenda by Tolk at the close, the papers here explore numerous dimensions of human systems engineering, providing a window on experiences today and challenges for the future.
Judith DahmannMITRE Corporation Technical FellowINCOSE FellowAlexandria, Virginia
Preface
The International Council on Systems Engineering (INCOSE) defines Systems Engineering (SE) as an interdisciplinary approach and means to enable the realization of successful systems. SE focuses on defining customer needs by documenting requirements and then proceeds with functional analysis, design synthesis, and system validation. Throughout this process the complete system life cycle is considered: operations, performance, test, manufacturing, cost and schedule, training and support, and disposal.
SE promotes a team effort integrating various disciplines and specialty groups into a structured development process that considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the users’ needs. It is therefore considered a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. In all these aspects, humans play a vital role. They define, use, maintain, and, as operators and decision makers, are part of the system. Since a system is only as strong as its weakest component, human potentials, capabilities, constraints, and limitations are pivotal for the successful engineering of systems.
The Human Systems Integration (HSI) Technical Committee (TC) of the IEEE Systems Council was formed in order to increase awareness of the user during SE processes. It focuses on identifying and improving methods to integrate human concerns into the conceptualization and design of systems. It encourages early understanding of human roles and responsibilities, along with limitations and constraints that may impact system design. This consideration of human concerns from the system design perspective is termed human systems engineering (HSE). HSE describes the engineering efforts conducted as part of the system design and analysis processes to evaluate the appropriateness and feasibility of system functions and roles allocated to operators. The importance of this topic is apparent from notable design errors, i.e. the placement of the iPhone 4 antenna resulting in poor performance when holding the phone, to design successes, for example, the Xbox Kinect that allowed users to interact with the game system without a handheld interface.
One of the goals of the HSI TC is to improve communication between the HSI and SE communities to provide better integration of human and systems to expedite resolution of issues. The HSI TC members promote this collaboration through conference presentations and workshops, as well as cooperation with other societies through joint events. Our members serve as technical reviewers and society liaisons to promote the role of human factors in engineering. This volume is a continuation of our technical committee outreach efforts.
This book was written for both systems engineers and HSI practitioners who are designing and evaluating different types of sociotechnical systems across various domains. Many engineers have heard of HSE but don’t understand its importance in system development. This book presents a series of HSE applications on a range of topics, such as interface design, training requirements, personnel capabilities and limitations, and human task allocation. Each chapter represents a case study of the application of HSE from different dimensions of sociotechnical systems. The examples are organized using a sociotechnical system framework to reference the applications across multiple system types and domains. These case studies serve to illustrate the value of applying HSE to the broader engineering community and provide real‐world examples. The goal is to provide reference examples in a variety of domains and applications to educate engineers; the integration of the human user is listed as one of the enablers of SE in the Systems Engineering Body of Knowledge (SEBoK).
As IEEE is primarily concerned with the engineering of electrical technologies, our goal is to include the perspective of design engineers who may be removed from the end user and unaware of potential concerns. The book chapters represent specific projects from the HSI TC members; the result is a set of stories that show the value of HSE through the development of human interfaces, improvement of human performance, effective use of human resources, and the design of safe and usable systems. The examples cross traditional SE sectors and identify a diverse set of HSE practices. Our contributed book is a source of information for engineers on current HSE applications.
Holly A. H. Handley, PhD, PE and Andreas Tolk, PhD
1 Introduction to the Human Systems Engineering Framework
Holly A. H. Handley
Old Dominion University, Norfolk, VA, USA
Keywords: human systems engineering; human system integration; ergonomics; socio‐technical framework;
1.1 Introduction
Many human‐centered disciplines exist that focus on the integration of humans and systems. These disciplines, such as human factors (HF), human systems integration (HSI), and human factors engineering (HFE), are often used interchangeable but have distinct meanings. This introductory chapter identifies these varied disciplines and then defines the domain of human systems engineering (HSE). HSE implies that human has been “engineered” into the design, in contrast to “integrating” the user into the system at later stages of design.
The use of HSE for increasing complex and varied sociotechnical systems requires a more context‐specific suite of tools and processes to address the combination of human and system components. More often a wider range of system stakeholders, including design and development engineers, are becoming involved in, and are vested in, the success of both HSE‐ and HSI‐related efforts. To assist these efforts, a framework was developed based on the dimensions of sociotechnical system and domain types, with relationships to specific HSI and SE concerns. The development of this framework and its dimensions is also described in the chapter.
Finally, the framework is used to organize a wide range of case studies across a variety