A Framework of Human Systems Engineering. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119698760
Скачать книгу
to healthcare, to opioid crisis response, and to the recovery of persons at risk from human traffickers. In each of these use cases, development was led by industry in partnership with government.

      In light of this range of applications, the definition of “situational awareness” remains somewhat ambiguous and nonpractical. For the purpose of this paper, SA refers back to the foundational definition espoused by Dr. Endsley and refers to the real‐time presentation of pertinent information to a human operator to inform subsequent action. The geographic domain is relevant only in so much as its relevance to the human operator in question. Similarly, historic information and trends are relevant only in as much as they apply to the real‐time context of the operator. Multiple operators may be involved in a single event, and the SA platform must consider the perspective and context of each in order to achieve its intended purpose.

      To meet these expectations, law enforcement agencies in particular employ a variety of surveillance tools to achieve awareness of events occurring in the geographic domain under their authority. These tools include closed‐circuit television (CCTV) cameras; license plate readers; and chemical, biological, radiation, nuclear, and explosive (CBRNE) sensors. Historically compartmented information warehouses containing criminal histories, emergency calls, use of force logs, and similar are increasingly being fused and made available for real‐time search. Moreover, noncriminal information ranging from social media and other open‐source datasets to credit histories and other quasi‐public records are increasingly accessible to provide context to an event. The use of such noncriminal records to assist law enforcement is often vigorously contested and will be addressed later in this chapter, but regardless of a particular agency's implementation, today's challenge remains a big data problem. In other words, identifying the particular set of information relevant to an event is paramount; with few exceptions, the requisite data points to improve an officer's SA are available.

      It is in this context that the demands on first responders to employ SA platforms for decision support are being placed. With this comes a myriad of HSI concerns, ranging from the physical real estate available to first responders to interact with SA platforms to the means by which this complex set of information can be presented. Underpinning all considerations is the paramount importance of officer safety and the need to understand the operator's context in order to establish information relevance and right to know.

      With the advent of IoT sensors and significant increases in capabilities for both connectivity and storage, big data has become the prime dependency for many new technologies and solutions, especially SA. In public safety, and more particularly with first responders, the sheer breadth of information available is overwhelming. Designing human system interfaces that can retrieve, parse, and organize relevant data based on real‐time activities and events, as well as present it in a meaningful, concise, and unintrusive (yet attentive) way, is a defining challenge.

      At its core, public safety focused SA is predicated on alerting to noteworthy events in real time while increasing the knowledge and expanding the experience of responding personnel by drawing upon all pertinent historical, concurrent, and predictive information available to the agency. With a primary focus on officer safety, users of this system only have a few minutes upon being notified of the event to ingest the relevant data, make a determination on tactics, and adjust their response accordingly. This is all while they are also driving, communicating with dispatch, and coordinating with colleagues and supervisors. As such, the intelligence generated and presented must offer substantive benefits as rapidly and concisely as possible. The immediate goal of all first responders is to protect life, and much of the data available to police departments can support key areas such as subject identification, threat assessment, and response tactics, all of which greatly enhance SA and help to keep everyone safe.

      Machine‐assisted data retrieval, organization, and presentation not only improve the safety of all those involved, but it supports officer decision making by informing them of supplementary details and historical activities and actions. These characteristics are unique to every call for service, and a better understanding of them within the context of the current interaction is invaluable. However, the same mechanisms that collate the appropriate information must also exclude the rest. Considering the highly mobile nature of first responders and the inherent limitations of portable hardware in a public safety setting, it is not practical to expose all associated data, even if it could potentially be relevant in some ancillary contexts. Conversely, ignoring that information has its own tangible detriments, most notably, indicating an incorrect narrative to responding personnel that causes them to make poor judgments that have lasting impacts.