Все эти модели имеют три общие характеристики. Во-первых, они упрощают, устраняя несущественные детали, абстрагируясь от реальности или создавая нечто совершенно новое. Во-вторых, обеспечивают формализацию, давая точные определения. Используют математику, а не слова. Могут представлять убеждения в виде распределения вероятностей по состояниям мира или предпочтения в виде упорядоченного списка альтернатив. Создают путем упрощения и точного определения пространство, в котором можно применять логику, выдвигать гипотезы, разрабатывать решения и подбирать данные. Формируют структуры, в рамках которых мы можем логически мыслить. Как писал Людвиг Витгенштейн в своем труде Tractatus Logico-Philosophicus («Логико-философский трактат»), «логика заботится о себе сама, нам нужно лишь следить за тем, как она это делает». Логика помогает объяснять, прогнозировать, коммуницировать и разрабатывать. Тем не менее логика имеет свою цену, что ведет к третьей характеристике моделей: все модели неправильны, как отметил Джордж Бокс[8]. И это действительно верно в отношении всех моделей: даже грандиозные творения Ньютона, которые мы называем законами, действуют только в определенных масштабах. Модели неправильны, потому что упрощают действительность. Опускают детали. Рассмотрение множества моделей позволяет преодолеть ограничение научной строгости путем охвата всего пространства возможного.
Полагаться на одну модель – это высокомерие, чреватое катастрофой. Верить в то, что одно уравнение может объяснить или спрогнозировать сложные явления реального мира, – значит стать жертвой притягательной силы чистых, строгих математических форм. Не стоит рассчитывать на то, что какая-либо одна модель позволит составить точный численный прогноз уровня моря через 10 000 лет или уровня безработицы через 10 месяцев. Для осмысления сложных систем понадобится множество моделей. Такие сложные системы, как политика, экономика, международные отношения или мозг, демонстрируют непрерывно меняющиеся системные эффекты и закономерности, которые