Diseño estructural. Rafael Riddell C.. Читать онлайн. Newlib. NEWLIB.NET

Автор: Rafael Riddell C.
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9789561426634
Скачать книгу
rel="nofollow" href="#fb3_img_img_c0ad9a0a-d345-5315-add4-b3375c69608c.jpg" alt=""/>

      con σ igual a la desviación de la producción de acuerdo a lo especificado en el código. La Ec. 1-6, como la interpreta el código ACI, da el menor valor promedio fcr’ tal que, asumiendo distribución normal, asegure una probabilidad de 99 en 100 que la resistencia promedio de tres ensayos consecutivos exceda fc’. Otra forma de interpretar esta ecuación es, como ilustra la Fig. 1.3, que fc’ corresponde al percentil 9, i.e. la probabilidad de que la resistencia del hormigón sea menor que fc’ es de un 9%. A su vez, la Ec. 1-7 corresponde a asegurar que la resistencia de un ensayo cualquiera tiene una probabilidad de 1 en 100 de ser menor que (fc’ - 35).

      Figura 1.3 Distribución de resistencias de compresión del hormigón

      En el caso del acero rigen varias normas, tanto para el caso de barras de refuerzo a utilizarse en hormigón armado como para planchas utilizadas para producir perfiles metálicos. Típicamente, la resistencia de interés es la correspondiente al punto de fluencia, encontrándose en general que la probabilidad de que la tensión de fluencia sea menor que la nominal especificada por el fabricante es del orden de 3 a 5 %.

      Volviendo al problema de confiabilidad estructural hay que aclarar que al referirse a la resistencia R de un elemento se piensa no sólo en la capacidad del material que lo constituye, sino en el conjunto de variables que intervienen en la resistencia, en efecto:

      en que las ri son todas variables aleatorias que representan las propiedades mecánicas, los parámetros que pueden afectar dichas propiedades, las propiedades geométricas del elemento y su sección, las condiciones de vinculación del elemento, etc. A su vez, el modelo no sólo debe incluir la incertidumbre implícita en la aleatoreidad de las variables r; sino también aquella asociada con la relación funcional g, es decir, con la imperfección del modelo analítico utilizado para predecir la resistencia R, y el posible sesgo asociado a la calidad de construcción según la práctica usual y el grado de inspección a nivel local o nacional.

      Del mismo modo, la solicitación S no corresponde simplemente a un valor especificado de carga, como aquellos en la Tabla 1.1, sino a un efecto, por ejemplo, “al momento flector máximo en una viga”, que depende de la carga de peso propio, de la intensidad de la sobrecarga, del área en que actúa la carga y tributa sobre la viga, del largo de la viga, etc, es decir, de un conjunto de variables aleatorias Si, tal que:

      Supóngase que se desea evaluar la seguridad de un diseño. Para ello se considerará primero la formulación conocida como margen de seguridad, en que el margen Z se define como:

      La confiabilidad, o medida de seguridad, puede cuantificarse en términos de la probabilidad:

      mientras que la probabilidad de falla corresponde a:

      Si la FDP de Z es conocida, la probabilidad de falla según la Ec. 1-1 es simplemente:

      Suponiendo que R y S son variables aleatorias estadísticamente independientes y normalmente distribuidas, con medias μR y μS y desviaciones estándar σy σS respectivamente, es fácil demostrar que Z=R-S es también gaussiana con media:

      y varianza:

      Siendo Z normal, su FDP es:

      En notación abreviada se refiere a esta distribución como N(μzz). La integración definida por la Ec. 1-13 para el cálculo de la probabilidad de falla puede realizarse directamente; sin embargo, es usual realizar un cambio de variable para utilizar las tablas disponibles para la FDA Φ (x) de la distribución normal estandarizada a media nula y desviación estándar unitaria, es decir, la distribución N(0,1);

      Entonces, haciendo x = (z-μz,)/σz, y dz = σz dx la distribución de la Ec. 1-16 se estandariza a la N(0,1) dada por la Ec. 1-17. Por lo tanto, la integral de la Ec. 1-13 es:

      que por la simetría de la distribución N(0,1) puede escribirse como:

      Finalmente, en virtud de las Ecs. 1-14 y 1-15:

      en que los valores de Φ se presentan en la Tabla P.1 del Anexo P. La Ec. 1-21 ilustra el importante hecho que la seguridad no sólo depende del margen entre Ry S, representado por sus valores medios, sino también de la dispersión o incertidumbre respecto del valor de tales variables. Este hecho se ilustra esquemáticamente en la Fig. 1.4, donde las líneas continuas representan funciones de distribución hipotéticas de R y S y las líneas de guiones distribuciones tales que los valores medios se han mantenido, pero las desviaciones estándar se han duplicado. El efecto es que ha aumentado el área traslapada entre ambas curvas, lo que refleja un aumento de la probabilidad de falla. Notar, sin embargo, que PF no corresponde al área traslapada, pero si tal área crece, PF también crece.

      Figura 1.4 Distribuciones esquemáticas de la resistencia Ry la solicitacións

      Alternativamente la confiabilidad puede evaluarse mediante una formulación basada en el cuociente R/S, la que se asocia al concepto de factor de seguridad. En este caso es común asumir que Ry S son variables aleatorias independientes, con distribución log-normal. Cabe recordar que si una variable aleatoria X es lognormal, inX es normal, por tanto la FDP de X es:

      donde λ = E(InX) y ξ2= Var(InX) son los parámetros de la distribución y corresponden respectivamente a la media y a la varianza de In X. Estos parámetros se relacionan con la media μ= E(X) y la varianza σ2 = Var(X) a través de las relaciones (Ang y Tang, 1975):

      Si el coeficiente de variación Ω = σ /μ es pequeño, ξ ≈ Ω

      Refiriendo la seguridad en términos de la variable aleatoria Z tal que:

      variable que tiene distribución normal pues