My Life and Work - The Original Classic Edition. Ford Henry. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ford Henry
Издательство: Ingram
Серия:
Жанр произведения: Учебная литература
Год издания: 0
isbn: 9781486415144
Скачать книгу
cars a day was only a trifle and that I hoped before long to make a thousand a day, they were inexpressibly shocked and I understand seriously contemplated court action. If I had followed the general opinion of my associates I should have kept the business about as it was, put our funds into a fine administration building, tried to make bargains with such competitors as seemed too active, made new designs from time to time to catch the fancy of the public, and generally have passed on into the position of a quiet, respectable citizen with a quiet, respectable business.

       The temptation to stop and hang on to what one has is quite natural. I can entirely sympathize with the desire to quit a life of activity and retire to a life of ease. I have never felt the urge myself but I can comprehend what it is--although I think that a man who retires ought entirely to get out of a business. There is a disposition to retire and retain control. It was, however, no part of my plan to do anything of that sort. I regarded our progress merely as an invitation to do more--as an indication that we had reached a

       place where we might begin to perform a real service. I had been planning every day through these years toward a universal car. The public had given its reactions to the various models. The cars in service, the racing, and the road tests gave excellent guides as to the changes that ought to be made, and even by 1905 I had fairly in mind the specifications of the kind of car I wanted to build. But I lacked the material to give strength without weight. I came across that material almost by accident.

       In 1905 I was at a motor race at Palm Beach. There was a big smash-up and a French car was wrecked. We had entered our "Model K"--the high-powered six. I thought the foreign cars had smaller and better parts than we knew anything about. After the wreck I picked up a little valve strip stem. It was very light and very strong. I asked what it was made of. Nobody knew. I gave the stem to my assistant.

       "Find out all about this," I told him. "That is the kind of material we ought to have in our cars."

       He found eventually that it was a French steel and that there was vanadium in it. We tried every steel maker in America--not one could make vanadium steel. I sent to England for a man who understood how to make the steel commercially. The next thing was to get a plant to turn it out. That was another problem. Vanadium requires 3,000 degrees Fahrenheit. The ordinary furnace could not

       go beyond 2,700 degrees. I found a small steel company in Canton, Ohio. I offered to guarantee them against loss if they would run a heat for us. They agreed. The first heat was a failure. Very little vanadium remained in the steel. I had them try again, and the sec-ond time the steel came through. Until then we had been forced to be satisfied with steel running between 60,000 and 70,000 pounds tensile strength. With vanadium, the strength went up to 170,000 pounds.

       Having vanadium in hand I pulled apart our models and tested in detail to determine what kind of steel was best for every part-- whether we wanted a hard steel, a tough steel, or an elastic steel. We, for the first time I think, in the history of any large construction, determined scientifically the exact quality of the steel. As a result we then selected twenty different types of steel for the various steel parts. About ten of these were vanadium. Vanadium was used wherever strength and lightness were required. Of course they

       21

       are not all the same kind of vanadium steel. The other elements vary according to whether the part is to stand hard wear or whether it needs spring--in short, according to what it needs. Before these experiments I believe that not more than four different grades of steel had ever been used in automobile construction. By further experimenting, especially in the direction of heat treating, we have been able still further to increase the strength of the steel and therefore to reduce the weight of the car. In 1910 the French Department of Commerce and Industry took one of our steering spindle connecting rod yokes--selecting it as a vital unit--and tried it against a similar part from what they considered the best French car, and in every test our steel proved the stronger.

       The vanadium steel disposed of much of the weight. The other requisites of a universal car I had already worked out and many of them were in practice. The design had to balance. Men die because a part gives out. Machines wreck themselves because some parts are weaker than others. Therefore, a part of the problem in designing a universal car was to have as nearly as possible all parts of equal strength considering their purpose--to put a motor in a one-horse shay. Also it had to be fool proof. This was difficult because a gasoline motor is essentially a delicate instrument and there is a wonderful opportunity for any one who has a mind that way to mess it up. I adopted this slogan:

       "When one of my cars breaks down I know I am to blame."

       From the day the first motor car appeared on the streets it had to me appeared to be a necessity. It was this knowledge and assurance that led me to build to the one end--a car that would meet the wants of the multitudes. All my efforts were then and still are turned to the production of one car--one model. And, year following year, the pressure was, and still is, to improve and refine and make better, with an increasing reduction in price. The universal car had to have these attributes:

       (1) Quality in material to give service in use. Vanadium steel is the strongest, toughest, and most lasting of steels. It forms the foundation and super-structure of the cars. It is the highest quality steel in this respect in the world, regardless of price.

       (2) Simplicity in operation--because the masses are not mechanics. (3) Power in sufficient quantity.

       (4) Absolute reliability--because of the varied uses to which the cars would be put and the variety of roads over which they would

       travel.

       (5) Lightness. With the Ford there are only 7.95 pounds to be carried by each cubic inch of piston displacement. This is one of the reasons why Ford cars are "always going," wherever and whenever you see them--through sand and mud, through slush, snow, and water, up hills, across fields and roadless plains.

       (6) Control--to hold its speed always in hand, calmly and safely meeting every emergency and contingency either in the crowded streets of the city or on dangerous roads. The planetary transmission of the Ford gave this control and anybody could work it. That is the "why" of the saying: "Anybody can drive a Ford." It can turn around almost anywhere.

       (7) The more a motor car weighs, naturally the more fuel and lubricants are used in the driving; the lighter the weight, the lighter the

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA AQBIAAAAAQAB/+IMWElDQ19QUk9GSUxFAAEBAAAMSExpbm8CEAAAbW50clJHQiBYWVogB84AAgAJ AAYAMQAAYWNzcE1TRlQAAAAASUVDIHNSR0IAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1IUCAgAAAA AAAAA