Elements of the Theory and Practice of Chymistry, 5th ed. Pierre Joseph Macquer. Читать онлайн. Newlib. NEWLIB.NET

Автор: Pierre Joseph Macquer
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664591579
Скачать книгу
and semi-metals; of pure acids; or even of their simplest combinations, such as sulphur, vitriol, alum, sea-salt: of all these we have said enough.

      We are now to treat of bodies that are more complex, and therefore more susceptible of decomposition. These bodies are compound masses, or combinations of those above-mentioned; that is, metallic substances as they are found in the bowels of the earth, united with several sorts of sand, stones, earths, semi-metals, sulphur, &c. When the metallic matter is combined with other matters, in such a proportion to the rest that it may be separated from them with advantage and profit, these compounds are called Ores; when the case is otherwise, they are called Pyrites, and Marcasites; especially if sulphur or arsenic be predominant therein, which often happens.

      In order to analyse an ore, and get out of it the metal it contains, the first step is to free it from a great deal of earth and stones, which commonly adhere to it very slightly and superficially. This is effected by pounding the ore, and then washing it in water; to the bottom of which the metalline parts presently sink, as being the heaviest, while the small particles of earth and stone remain suspended some time longer.

      Thus the metallic part is left combined with such matters only as are most intimately complicated with it. These substances are most commonly sulphur and arsenic. Now, as they are much more volatile than other mineral matters, they may be dissipated in vapours, or the sulphur may be consumed, by exposing the ore which contains them to a proper degree of heat. If the sulphur and arsenic be desired by themselves, the fumes thereof may be catched and collected in proper vessels and places. This operation is called Roasting an Ore.

      The metal thus depurated is now fit to be exposed to a greater force of fire, capable of melting it.

      On this occasion the semi-metals and the imperfect metals require the addition of some matter abounding in phlogiston, particularly charcoal-dust; because these metallic substances lose their phlogiston by the action of the fire, or of the fluxes joined with them, and therefore without this precaution would never acquire either the splendour or the ductility of a metal. By this means the metallic substance is more accurately separated from the earthy and stony parts, of which some portion always remains combined therewith till it is brought to fusion. For, as we observed before, a metallic glass or calx only will contract an union with such matters; a metal possessed of its phlogiston and metalline form being utterly incapable thereof.

      We took notice of the cause of this separation above, where we shewed that a metal possessed of its phlogiston and metalline form will not remain intimately united with any calcined or vitrified matter, not even with its own calx or glass.

      The metal therefore on this occasion gathers into a mass, and lies at the bottom of the vessel, as being most ponderous; while the heterogeneous matters float upon it in the form of a glass, or a semi-vitrification. These floating matters take the name of Scoriæ, and the metalline substance at bottom is called the Regulus.

      It frequently happens, that the metalline regulus thus precipitated is itself a compound of several metals mixed together, which are afterwards to be separated. We cannot at present enter into a detail of the operations necessary for that purpose: they will appear in our Treatise of Practical Chymistry: but the principles on which they are founded may be deduced from what we have said above, concerning the properties of the several metals and of acids.

      It is proper to observe, before we quit this subject, that the rules here laid down for analysing ores are not absolutely general: for example, it is often adviseable to roast the ore before you wash it; for by that means some ores are opened, attenuated, and made very friable, which would cost much trouble and expence, on account of their excessive hardness, if you should attempt to pound them without a previous torrefaction.

      It is also frequently necessary to separate the ore from part only of its stone; sometimes to leave the whole; and sometimes to add more to it, before you smelt it. This depends on the quality of the stone, which always helps to promote fusion when it is in its own nature fusible and vitrifiable. It is then called the Fluor of the ore: but of this we must say, as we did of the preceding article, it is sufficient for our present purpose to lay down the fundamental principles on which the reason of every process is built; the description of the operations themselves being reserved for our second Part.

      We shall now give a succinct account of the principal ores and mineral bodies, contenting ourselves with just pointing out the particulars of which they severally consist.

      Of the Pyrites.

      The yellow Pyrites.

      The yellow Pyrites is a mineral consisting of sulphur, iron, an unmetallic earth, and frequently a little copper: the sulphur, which is the only one of these principles that is volatile, may be separated from the rest by sublimation: it usually makes a fourth, and sometimes a third, of the whole weight of these Pyrites. The other principles are separated from one another by fusion and reduction with the phlogiston, which, by metallizing the ferruginous and cupreous earths, parts them from the unmetallic earth: for this earth vitrifies, and cannot afterwards continue united with metallic matters possessed of their metalline form, as hath been said before.

      There is yet another way of decomposing the yellow Pyrites, which is to let it ly till it effloresces, or begins to shoot into flowers; which is nothing but a sort of slow accension of the sulphur it contains. The sulphur being by this means decomposed, its acid unites with the ferruginous and cupreous parts of the Pyrites, and therewith forms green and blue vitriols; which may be extracted by steeping in water the Pyrites which has effloresced or been burnt, and then evaporating the lixivium to a pellicle; for by this means the vitriol will shoot into crystals.

      Sometimes the Pyrites contains also an earth of the same nature with that of alum; a Pyrites of this sort, after flowering, yields alum as well as vitriol.

      The white Pyrites.

      The white Pyrites contains much arsenic, a ferruginous earth, and an unmetallic earth. The arsenic, being a volatile principle, may be separated by sublimation or distillation from the rest, which are fixed: and these again may be disjoined from each other by fusion and reduction, as was said in relation to the yellow Pyrites.

      The Copper Pyrites.

      The Copper Pyrites contains sulphur, copper, and an unmetallic earth. A great deal thereof likewise holds arsenic, and its colour approaches more or less to orange, yellow, or white, according to the quantity of arsenic in it. It may be decomposed by the same means as the yellow and white Pyrites.

      

      Of Ores.

      Of Gold Ores.

      Gold being constantly found in its metalline form, and never combined with sulphur and arsenic, its matrices are not, properly speaking, ores; because the metal contained in them is not mineralized. The gold is only lodged between particles of stone, earth, or sand, from which it is easily separated by lotion, and by amalgamation with quick-silver. The gold thus found is seldom pure, but is frequently alloyed with more or less silver, from which it is to be separated by quartation.

      It is also very common to find gold in most ores of other metals or semi-metals, and even in the Pyrites; but the quantity contained therein is generally so small, that it would not pay the cost of extracting it. However, if any should incline to attempt it, merely out of curiosity, it would be necessary to begin with treating these ores in the manner proper for separating their metalline part; then to cupel the metalline regulus so obtained; and, lastly, to refine it by quartation.

      Of Silver Ores.

      It is no rare thing to find silver, as well as gold, in its metalline form, only lodged in sundry earths and stony matters, from which it may be separated in the same manner as gold. But the greatest quantities of this metal are usually dug out of the bowels of the earth in a truly mineral state: that is, combined with different substances, and particularly with sulphur and arsenic.

      Several silver ores are distinguished by peculiar characteristics, and are accordingly denoted by particular names. That which is called the Vitreous Silver Ore, is scarce any