Die Grundlagen der Arithmetik. Frege Gottlob. Читать онлайн. Newlib. NEWLIB.NET

Автор: Frege Gottlob
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4064066114145
Скачать книгу
auch die Bedingungen der Giltigkeit genauer kennen lernt. So hat man allgemein die Frage, wie wir zu dem Inhalte eines Urtheils kommen, von der zu trennen, woher wir die Berechtigung für unsere Behauptung nehmen.

      Jene Unterscheidungen von apriori und aposteriori, synthetisch und analytisch betreffen nun nach meiner5 Auffassung nicht den Inhalt des Urtheils, sondern die Berechtigung zur Urtheilsfällung. Da, wo diese fehlt, fällt auch die Möglichkeit jener Eintheilung weg. Ein Irrthum apriori ist dann ein ebensolches Unding wie etwa ein blauer Begriff. Wenn man einen Satz in meinem Sinne aposteriori oder analytisch nennt, so urtheilt man nicht über die psychologischen, physiologischen und physikalischen Verhältnisse, die es möglich gemacht haben, den Inhalt des Satzes im Bewusstsein zu bilden, auch nicht darüber, wie ein Anderer vielleicht irrthümlicherweise dazu gekommen ist, ihn für wahr zu halten, sondern darüber, worauf im tiefsten Grunde die Berechtigung des Fürwahrhaltens beruht.

      Dadurch wird die Frage dem Gebiete der Psychologie entrückt und dem der Mathematik zugewiesen, wenn es sich um eine mathematische Wahrheit handelt. Es kommt nun darauf an, den Beweis zu finden und ihn bis auf die Urwahrheiten zurückzuverfolgen. Stösst man auf diesem Wege nur auf die allgemeinen logischen Gesetze und auf Definitionen, so hat man eine analytische Wahrheit, wobei vorausgesetzt wird, dass auch die Sätze mit in Betracht gezogen werden, auf denen etwa die Zulässigkeit einer Definition beruht. Wenn es aber nicht möglich ist, den Beweis zu führen, ohne Wahrheiten zu benutzen, welche nicht allgemein logischer Natur sind, sondern sich auf ein besonderes Wissensgebiet beziehen, so ist der Satz ein synthetischer. Damit eine Wahrheit aposteriori sei, wird verlangt, dass ihr Beweis nicht ohne Berufung auf Thatsachen auskomme; d. h. auf unbeweisbare Wahrheiten ohne Allgemeinheit, die Aussagen von bestimmten Gegenständen enthalten. Ist es dagegen möglich, den Beweis ganz aus allgemeinen Gesetzen zu führen, die selber eines Beweises weder fähig noch bedürftig sind, so ist die Wahrheit apriori.6

      § 4. Von diesen philosophischen Fragen ausgehend kommen wir zu derselben Forderung, welche unabhängig davon auf dem Gebiete der Mathematik selbst erwachsen ist: die Grundsätze der Arithmetik, wenn irgend möglich, mit grösster Strenge zu beweisen; denn nur wenn aufs sorgfältigste jede Lücke in der Schlusskette vermieden wird, kann man mit Sicherheit sagen, auf welche Urwahrheiten sich der Beweis stützt; und nur wenn man diese kennt, wird man jene Fragen beantworten können.

      Wenn man nun dieser Forderung nachzukommen versucht, so gelangt man sehr bald zu Sätzen, deren Beweis solange unmöglich ist, als es nicht gelingt, darin vorkommende Begriffe in einfachere aufzulösen oder auf Allgemeineres zurückzuführen. Hier ist es nun vor allen die Anzahl, welche definirt oder als undefinirbar anerkannt werden muss. Das soll die Aufgabe dieses Buches sein.7 Von ihrer Lösung wird die Entscheidung über die Natur der arithmetischen Gesetze abhangen.

      Bevor ich diese Fragen selbst angreife, will ich Einiges vorausschicken, was Fingerzeige für ihre Beantwortung geben kann. Wenn sich nämlich von andern Gesichtspunkten aus Gründe dafür ergeben, dass die Grundsätze der Arithmetik analytisch sind, so sprechen diese auch für deren Beweisbarkeit und für die Definirbarkeit des Begriffes der Anzahl. Die entgegengesetzte Wirkung werden die Gründe für die Aposteriorität dieser Wahrheiten haben. Deshalb mögen diese Streitpunkte zunächst einer vorläufigen Beleuchtung unterworfen werden.

       Inhaltsverzeichnis

       Inhaltsverzeichnis

      § 5. Man muss die Zahlformeln, die wie 2 + 3 = 5 von bestimmten Zahlen handeln, von den allgemeinen Gesetzen unterscheiden, die von allen ganzen Zahlen gelten.

      Jene werden von einigen Philosophen8 für unbeweisbar und unmittelbar klar wie Axiome gehalten. Kant9 erklärt sie für unbeweisbar und synthetisch, scheut sich aber, sie Axiome zu nennen, weil sie nicht allgemein sind, und weil ihre Zahl unendlich ist. Hankel10 nennt mit Recht diese Annahme von unendlich vielen unbeweisbaren Urwahrheiten unangemessen und paradox. Sie widerstreitet in der That dem Bedürfnisse der Vernunft nach Uebersichtlichkeit der ersten Grundlagen. Und ist es denn unmittelbar einleuchtend, dass

      135664 + 37863 = 173527

      ist? Nein! und eben dies führt Kant für die synthetische Natur dieser Sätze an. Es spricht aber vielmehr gegen ihre Unbeweisbarkeit; denn wie sollen sie anders eingesehen werden als durch einen Beweis, da sie unmittelbar nicht einleuchten? Kant will die Anschauung von Fingern oder Punkten zu Hilfe nehmen, wodurch er in Gefahr geräth, diese Sätze gegen seine Meinung als empirische erscheinen zu lassen; denn die Anschauung von 37863 Fingern ist doch jedenfalls keine reine. Der Ausdruck »Anschauung« scheint auch nicht recht zu passen, da schon 10 Finger durch ihre Stellungen zu einander die verschiedensten Anschauungen hervorrufen können. Haben wir denn überhaupt eine Anschauung von 135664 Fingern oder Punkten? Hätten wir sie und hätten wir eine von 37863 Fingern und eine von 173527 Fingern, so müsste die Richtigkeit unserer Gleichung sofort einleuchten, wenigstens für Finger, wenn sie unbeweisbar wäre; aber dies ist nicht der Fall.

      Kant hat offenbar nur kleine Zahlen im Sinne gehabt. Dann würden die Formeln für grosse Zahlen beweisbar sein, die für kleine durch die Anschauung unmittelbar einleuchten. Aber es ist misslich, einen grundsätzlichen Unterschied zwischen kleinen und grossen Zahlen zu machen, besonders da eine scharfe Grenze nicht zu ziehen sein möchte. Wenn die Zahlformeln etwa von 10 an beweisbar wären, so würde man mit Recht fragen: warum nicht von 5 an, von 2 an, von 1 an?

      § 6. Andere Philosophen und Mathematiker haben denn auch die Beweisbarkeit der Zahlformeln behauptet. Leibniz11 sagt:

      »Es ist keine unmittelbare Wahrheit, dass 2 und 2 4 sind; vorausgesetzt, dass 4 bezeichnet 3 und 1. Man kann sie beweisen und zwar so:

Definitionen: 1) 2 ist 1 und 1,
2) 3 ist 2 und 1,
3) 4 ist 3 und 1.

      Axiom: Wenn man Gleiches an die Stelle setzt, bleibt die Gleichung bestehen.

Beweis: 2 + 2 = 2 + 1 + 1 = 3 + 1 = 4.
Def. 1. Def. 2. Def. 3.

      Also: nach dem Axiom: 2 + 2 = 4.«

      Dieser Beweis scheint zunächst ganz aus Definitionen und dem angeführten Axiome aufgebaut zu sein. Auch dieses könnte in eine Definition verwandelt werden, wie es Leibniz an einem andern Orte12 selbst gethan hat. Es scheint, dass man von 1, 2, 3, 4 weiter nichts zu wissen braucht, als was in den Definitionen enthalten ist. Bei genauerer Betrachtung entdeckt man jedoch eine Lücke, die durch das Weglassen der Klammern verdeckt ist. Genauer müsste nämlich geschrieben werden:

      2 + 2 = 2 + (1 + 1)

       (2 + 1) + 1 = 3 + 1 = 4.

      Hier fehlt der Satz

      2 + (1 + 1) = (2 + 1) + 1,

      der ein besonderer Fall von

      a + (b + c) = (a + b) + c

      ist. Setzt man dies Gesetz voraus, so sieht man leicht, dass jede Formel des Einsundeins so bewiesen werden kann. Es ist dann jede Zahl aus der vorhergehenden zu definiren. In der That sehe ich nicht, wie uns etwa die Zahl 437986 angemessener gegeben werden könnte als in der leibnizischen Weise. Wir bekommen sie so, auch ohne eine Vorstellung von ihr zu haben, doch in