Finding Longitude: How ships, clocks and stars helped solve the longitude problem. Rebekah Higgitt. Читать онлайн. Newlib. NEWLIB.NET

Автор: Rebekah Higgitt
Издательство: HarperCollins
Серия:
Жанр произведения: Историческая литература
Год издания: 0
isbn: 9780007525874
Скачать книгу
with a known geographical position. The difficult part was knowing what time it was at the reference location. It was the same problem whether on land or sea, although a ship’s movements made any observations much more difficult. Also, for marine navigation, the determination of longitude should not take so long that it became pointless, and any observations had to be possible on most days; that is, they could not be based on infrequent celestial phenomena.

      There is another important issue related to this; as John Flamsteed (1646–1719), the first Astronomer Royal at Greenwich, noted in 1697, ‘Tis in vain to talk of the Use of finding the Longitude at Sea, except you know the true Longitude and Latitude of the Port for which you are designed.’4 In other words, navigators had to know exactly where their destination was and needed accurate charts on which to plot their position. So the story of finding longitude at sea is bound up with those of determining longitude on land and of creating better charts and maps.

image

      Fig. 6 – For places separated by 30° of longitude, the local time is two hours different – two hours later towards the east and two hours earlier towards the west. For places separated by 45° of longitude, the local times are three hours different

      {CollinsBartholomew Ltd 2014}

      Instructed ships shall sail to quick Commerce;

      By which remotest regions are alli’d:

      Which makes one City of the Universe,

      Where some may gain, and all may be suppli’d.5

      Instruction, a footnote explained, was to be by ‘a more exact knowledge of Longitudes’.

      Though highlighted by Dryden and others, determining longitude was just one of many maritime problems for which solutions had long been sought. Seamen’s health, including the control of scurvy, ensuring supplies of fresh water, understanding weather patterns, and building ships that were seaworthy, fast and, in the case of trading vessels, able to hold as much cargo as possible, would also tax the minds of seafarers, artisans and men of science for centuries to come. Yet it was longitude that would attract government attention.

       The practice of navigation

      Mariners were plying the oceans for centuries before the longitude ‘problem’ was solved. Many voyages were over relatively short distances and along familiar routes, often reasonably close to land, where being able to plot one’s position with precision would have counted for little, but longer voyages often passed without incident too. This was because there were well-developed techniques for navigating a ship successfully that worked right across the globe.

      Essentially, a mariner needed to know which way their ship was heading and how fast, where it had come from, where they were intending to go, how the sea and weather might affect them, and whether any hazards lay ahead. Tracking the ship’s movements was the key and relied on the chip-log (or ship-log) for measuring speed in knots, and the magnetic compass for direction (Fig. 7). Throughout the voyage, the officers supervised regular observations of speed and direction, noting them down and later transferring the information to a written log (Fig. 8), together with wind direction and other remarks.

      This information was used to fix the current position of the ship by plotting its direction and distance travelled from one point to the next – a procedure known as ‘dead reckoning’. By applying the latest measurements to the previous day’s position, and adjusting for the effects of wind and currents, the ship’s navigator could plot the new position on the chart and note it in the written log. This was fairly straightforward over short distances. Over much longer distances, printed tables were used to convert the ship’s various diagonal courses into changes of position north–south and east–west.

      Latitude could be measured directly from the maximum height of the Sun or the Pole Star above the horizon. A range of instruments for these observations had been devised over the centuries, with those in use by the late seventeenth century including the cross-staff (see Chapter 2, Fig. 14) and, particularly among English sailors, the backstaff (Fig. 9). Each measured an angle between the celestial body (usually the Sun) and the horizon, from which latitude could be derived with a few simple calculations. Until the perfection of techniques described in later chapters, however, longitude could only be derived from dead reckoning, which was indispensable on long-distance voyages. On days when the weather allowed an astronomical observation for latitude, the difference between that and the latitude calculated by dead reckoning could be used to adjust the longitude estimate, hopefully improving its accuracy.

      Constant vigilance was also essential – ‘the best navigator is the best looker-out’, Samuel Pepys noted.6 This included watching for additional clues to check the ship’s position, in particular when relatively close to the coast. Natural and man-made features, such as a headland, a church tower or a deliberately placed marker, were obvious signposts. As they headed ‘north up the Yorkshire coast’, for instance, Whitby sailors recalled that:

      When Flamborough we pass by

      Filey Brigg we mayn’t come nigh

      Scarborough Castle lies out to sea,

      Whitby three points northerly.7

      This local knowledge was also written down or published in books known as pilots or rutters (from the French routiers), which included descriptions and sketches of distinctive coastal features. When land was out of sight, birds, marine animals and plants could reveal its proximity and direction. On a voyage to Philadelphia in 1726, Benjamin Franklin was reassured that they would soon arrive, having seen

image

      Fig. 7 – A mariner’s compass made by Jonathan Eade in London, c.1750. The compass is mounted on gimbals to keep it steady on a moving ship. North is indicated by a fleur-de-lys

      {National Maritime Museum, Greenwich, London}

image

      Fig. 8 – A page from the log of the Orford by Lieutenant Lochard, October 1707, showing the observations and results of calculations for latitude and longitude. There is also a column for general comments (detail)

      {National Maritime Museum, Greenwich, London}

image

      Fig. 9 – A backstaff, used to measure the angle between the Sun and the horizon; made of lignum vitae and boxwood by Will Garner, London, 1734

      {National Maritime Museum, Greenwich, London}

image

      Fig. 10 – A seaman with a lead and line (right), from The Great and Newly Enlarged Sea Atlas or Waterworld, by Johannes van Keulen (Amsterdam, 1682) (detail)

      {National Maritime Museum, Greenwich, London}

image

      Fig. 11 – ‘The Islands of Scilly’, from Great Britain’s Coasting Pilot, by Greenvile Collins (London, 1693). The lighthouse on St Agnis (St Agnes) was nine miles out of position (detail)

      {National Maritime Museum, Greenwich, London}

image

      Fig. 12 – The Indian Ocean, from The Great and Newly Enlarged Sea Atlas (Amsterdam, 1682), showing Europeans’ incomplete knowledge of the coastline of Hollandia Nova (Australia) (detail)

      {National