ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Юрий Вениаминович Красков
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Техническая литература
Год издания: 2019
isbn: 978-5-5320-9876-3
Скачать книгу
решён и ему нужно лишь дождаться окончания строительства здания, чтобы сбылась мечта всей его жизни стать профессиональным учёным, причём в ранге академика. Гюйгенсу было поручено собрать материалы первых академических изданий. Для них Ферма предлагал открытый им метод спуска и решение на его основе конкретных арифметических задач.

      Однако о том, что эти задачи очень трудны, мало кто знал и Ферма было понятно, что опубликуй он их решения, то они вообще не произведут никакого впечатления. У него уже был такой опыт и теперь он приготовил настоящий сюрприз. Для тех, кто не оценит по достоинству его решения, он предложит решить ещё одну задачу. Это основная теорема арифметики, имеющая особую значимость для всей науки, поскольку без неё вся теория теряет силу. Ферма обнаружил в доказательстве Евклида ошибку и пришёл к выводу, что доказать эту теорему без применения метода спуска чрезвычайно трудно, если вообще возможно. Однако теперь-то мы можем раскрыть и эту тайну с помощью наших возможностей заглянуть в тайник Ферма с «еретическими письменами» и вернуть его утраченное доказательство науке в виде представленной ниже реконструкции.

      3.3.2. Доказательство Ферма

      Итак, чтобы доказать основную теорему арифметики, предположим, что существуют равные натуральные числа A, B, состоящие из разных простых множителей:

      A=B (1)

      где A=pp1p2 …pn; B=хx1x2 …xm ; n≥1; m≥1

      В силу равенства чисел A, B каждое из них делится на любое из простых чисел pi или xi. Каждое из чисел A, B может состоять из любого набора простых множителей, в т. ч. и одинаковых, но при этом среди них нет ни одного pi равного xi, иначе в (1) они были бы сокращены.

      Теперь (1) можно представить, как:

      pQ = xY (2)

      где p, x – минимальные простые числа среди pi, xi; Q=A/p; Y=B/x .

      Поскольку множители p, x разные, условимся, что p>x; x=p–δ1, тогда

      pQ = (p – δ1)(Q + δ2) (3)

      где δ1=p–x; δ2=Y–Q

      Из (3) следует Qδ1=(p – δ12 или

      Qδ1 = xδ2 (4)

      Уравнение (4) – это прямое следствие предположения (1). Правая часть этого уравнения содержит в явном виде простой множитель x. Однако в левой части уравнения (4) число δ1 не может содержать множитель x, т.к. δ1=p–x не делится на x из-за того, что p – простое число. Число Q также не содержит множитель x, т.к. по нашему предположению оно состоит из множителей pi, среди которых нет ни одного равного x. Таким образом, справа в уравнения (4) есть множитель x, а слева его нет. Тем не менее нет оснований утверждать, что это невозможно, т.к. мы изначально допускаем существование равных чисел с разными простыми множителями.

      Тогда остается лишь признать, что если существуют натуральные числа A=B, составленные из разных простых множителей, то необходимо, чтобы в этом случае существовали и другие натуральные числа A1= Qδ1 и B1=xδ2; также равные между собой и составленные из разных простых множителей. Если учитывать, что

      δ1=(p–x)<p, а δ2=(Y–Q)<Y,

      то