Если разные предметы сравниваются по некоторому свойству с одним и тем же предметом, то появляется такое понятие как измерение и тогда может быть через измерение и следует выявлять сущность числа? Однако это не так. По отношению к измерению число первично, т.е. если нет чисел, то не может быть и никаких измерений. Понимание сущности числа становится возможно только после установления того, что число неразрывно связано понятием «функция».
А вот это понятие определить совсем не сложно:
Функция – это заданная последовательность действий.
В свою очередь, действия не могут существовать сами по себе, т.е. в состав функции, кроме них должны входить компоненты, с которыми эти действия выполняются. Эти компоненты называются «аргументы функции». Отсюда следует и общее определение понятия числа:
Число есть объективная реальность, существующая как счётная величина и состоящая из аргументов функции.
Например, a + b + c = d, где a, b, c – аргументы, а d – счётная величина32.
Чтобы понять, какая пропасть отделяет Пьера Ферма от остального учёного мира, достаточно сравнить это простое определение с тем пониманием, которое есть в сегодняшней науке [21]. А вот понимание, явно присутствующее в научном творчестве Ферма, позволило ему ещё в те далёкие времена достигать результатов, которые для других учёных оказывались либо сопряжены с чрезвычайными трудностями, либо вообще недостижимы. Можно дать и более широкое определение понятия числа, а именно:
Число есть разновидность данных, представляемых в виде функций.
Рисунок 30
Пифагор
Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. В этом определении нужно ещё разъяснить сущность понятия «данные». Однако для современной науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа33. Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число. Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.
Рисунок 31
Готфрид Лейбниц
Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц