Рисунок 11
Пьер де Каркави́
Для Ферма всё складывалось так, что у него не было никакой возможности решить эту проблему иначе, как его прямым участием в подготовке королевского указа о создании Французской академии наук. На это указывает его переписка с Мерсенном и Пьером де Каркави́ (Pierre de Carcavy), который занимался подготовкой этого указа. Заветный дворянский титул Ферма получил только через 17 лет прилежной службы в 1648 году, став членом палаты эдиктов, которая регулярно собиралась в городке Кастр недалеко от Тулузы. Но это повышение по службе лишь увеличило его нагрузку на работе и ещё более ограничило его возможности заниматься наукой.
Но, как это ни парадоксально, в этой жизненной драме отчётливо видится воистину божественный промысел, возложивший на сенатора Пьера де Ферма особую миссию, нацеленную на то, чтобы уберечь науку от разрушения. В том раннем возрасте она ещё виделась прекрасным деревом, которое, разрастаясь, становилось всё более ценным и привлекательным. Но по мере развития науки присущие ей черты совершенства и гармонии стали потихоньку увядать, а образ прекрасного творения разума всё более походить на беспомощного уродца.
Эти первые признаки неблагополучия ещё тогда были замечены Ферма, т.к. его полемики с коллегами по переписке возникали почти на пустом месте. Оказалось, что у этого деревца почти нет корней. Это означает, что у науки нет достаточно прочного фундамента и ей грозит участь Пизанской башни. Тогда, чтобы это роскошное здание науки служило по назначению, все творческие силы надо будет задействовать не на развитие, а на то, чтобы не допустить его полного обрушения.
Для Ферма эта тема выходила за рамки его физических возможностей, и он рассматривал её только с точки зрения обобщения методов решения разных арифметических задач. Ведь арифметика – это не какая-то отдельная наука, а основа основ для всех других наук. Если нет арифметики, то и вообще никакой науки тоже нет. В этом смысле арифметические задачи, предложенные Ферма, получают особую значимость. Их особенность в том, что они приучают мыслить общими категориями, т.е. находить методы, регламентирующие возможности вычислений при решении широкого круга задач.
И вот ведь какой парадокс. О Диофанте, который дал решения почти двух сотен совсем не простых арифметических задач, ныне,