Фундаментальная радиохимия. Николай Дмитриевич Бетенеков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Николай Дмитриевич Бетенеков
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Учебная литература
Год издания: 2018
isbn:
Скачать книгу
энергией и высокой ионизирующей способностью, при определении энергии α-частиц (в α-спектрометрии) и в некоторых других случаях.

      Электрические импульсы, возникающие при прохождении ядерных частиц через счетчик, достаточно велики, что, как уже пояснялось, связано с механизмом газового усиления. Поэтому счетчики можно применять в тех случаях, когда необходимо обнаружить попадание в детектор каждой отдельной частицы или γ-кванта. Значение параметра RC для дифференциальных систем со счетчиком как детектором излучения должно быть относительно мало, вследствие чего нагрузочное сопротивление подбирают равным не более чем 107–108 Ом.

      В заключение отметим, что приведенные рассуждения об областях применения детекторов, работающих в дифференциальных и интегральных системах регистрации, справедливы не только для ионизационных, но и для других методов регистрации излучений (в частности, сцинтилляционных).

2.2. Принцип работы газовых счетчиков

      Счетчики, работа которых основана на ионизационном методе регистрации излучений, заполняют газовой смесью определенного состава, поэтому их часто называют газовыми счетчиками. Схема включения счетчика изображена на рис. 1.15. Как уже говорилось, прохождение ядерной частицы через счетчик вызывает появление импульса электрического тока. Этот импульс в свою очередь создает мгновенное падение напряжения (импульс напряжения) на нагрузочном сопротивлении R. Если построить график зависимости амплитуды импульса при регистрации частицы определенной энергии от напряжения на электродах счетчика, то получится кривая, представленная на рис. 1.16.

      Рис. 1.15. Схема включения газового счетчика:

      1 – катод; 2 – анод; 3 – изоляторы; 4 – источник высокого стабилизированного напряжения; R – нагрузочное сопротивление; С – конденсатор

      Как видно из сравнения рис. 1.14 с рис. 1.16, изменения силы тока и амплитуды импульса от напряжения описываются аналогичными кривыми. Это одна и та же зависимость, только рис.16 дает более детальную и правильную картину физического процесса и возможность оценить kгу. В частности, при напряжении U0U1 амплитуда импульса остается постоянной (рис. 16), что соответствует области плато ВС на рис. 1.14 (режим работы ионизационной камеры). Рис. 1.14 использовался для анализа работы токового детектора. Применительно к импульсным детекторам – счетчикам лучше говорить не о силе протекающего через них тока, а об амплитуде импульсов, и поэтому для анализа работы счетчиков следует обратиться к рис. 1.16.

      Рассмотрим область газового усиления, соответствующую напряжениям U1U4

      Рис.1.16. Зависимость амплитуды импульса от напряжения

      В ней можно выделить три характерных участка. На участке U1U2 газовое усиление обусловлено только процессами ударной ионизации. Увеличение амплитуды импульса на этом участке напряжений за счет газового усиления строго пропорционально числу актов