Кто изобрел современную физику? От маятника Галилея до квантовой гравитации. Геннадий Горелик. Читать онлайн. Newlib. NEWLIB.NET

Автор: Геннадий Горелик
Издательство: Горелик Геннадий Ефимович
Серия:
Жанр произведения: Физика
Год издания: 2013
isbn:
Скачать книгу
скоростью V и ускорением свободного падения g: при этом скорость движения по горизонтали сохраняется Vг = V, а по вертикали растет со временем Vв = gt.

      Сделаем мысленный эксперимент, поднявшись вместе с мысленным Галилеем на легендарную башню. Будем бросать шары горизонтально со все большей скоростью. Если скорость броска мала, шар упадет – по крутой параболе – на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.

      Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно “вниз”?

      На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли R ≈ 6000 км, а ускорение свободного падения g ≈ 10 м/сек2. Эти величины, как и теорему Пифагора, знал также и Галилей. И мог получить, что искомая скорость связана с g и R соотношением

      V2= gR

      и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.

      Однако Галилей легко обнаружил бы, что лунные величины Rл ≈ 400 000 км и Vл ≈ 1 км/сек никак не укладываются в полученное соотношение. А чтобы уложились, нужно значение gл, примерно в 3600 раз меньшее измеренного Галилеем на поверхности Земли. Расстояние до Луны больше радиуса Земли примерно в 60 раз, а 60 60 = 3600. Отсюда Галилей мог предположить, что ускорение свободного падения g меняется с удалением от Земли обратно пропорционально квадрату расстояния R:

      g ~ 1/ R 2.

      Отсюда, с учетом предыдущего соотношения, следует, что скорость спутника меняется с расстоянием R от небесного тела:

      V ~ 1/ R 1/2.

      А если небесное тело имеет несколько спутников, то для них всех величина VR 1/2 одна и та же.

      Подтвердить это свойство Галилей мог на им же открытых спутниках Юпитера. Беря нынешние значения и предполагая круговые орбиты, получим:

      Подтвердили бы это и спутники Солнца, то есть планеты (орбиты которых близки к круговым).

      Так закон свободного падения, установленный в земных физических опытах, поднялся бы до астрономических высот. И так Галилей пришел бы к новому закону природы, который мог назвать общим законом свободного падения: ускорение свободного падения на расстоянии R от центра небесного тела

      g(R) = A/R 2,

      где А – некая константа, определяемая свойствами небесного тела.

      Из наблюдательных данных Галилей мог вычислить соотношения таких констант для Земли, Юпитера и Солнца:

      AЮпитера ≈ 300 AЗемли,

      AСолнца ≈ 300 000 AЗемли.

      Глядя на эти три величины, характеризующие Землю, Юпитер и Солнце, естественно было спросить, какие различия небесных тел ведут к различиям их констант A. Из явных различий в размере, в количестве вещества (массе) и в состоянии