Галилей не придавал значения законам Кеплера и тем более его высказываниям о Солнце как источнике силы, движущей планетами, о том, что сила эта убывает обратно пропорционально расстоянию (а не его квадрату), и о силе притяжения как о “симпатии родственных тел”, их “стремлении к соединению”. “Стремление” это Кеплер иногда лишь уподоблял магнетизму, иногда отождествлял с ним. Из его текстов неясно, имел ли он в виду одну силу или две. Ясно лишь, что он надеялся на физиков, раз писал: “Пусть физики проверят…”
В 1600 году англичанин Гильберт опубликовал книгу “О магните, магнитных телах и большом магните – Земле”, где, кроме прочего, высказал идею о том, что Земной шар – огромный магнит, и экспериментально обосновал это с помощью модели Земли – шарообразного магнита, следя за поведением стрелки компаса на поверхности шара. Под впечатлением от этой книги Кеплер и писал о магнитных силах в планетной системе, внедряя последнее слово физики в астрономию. Но, в отличие от Гильберта, Кеплер не дал никаких конкретных, хотя бы качественных, доводов и никак не связал магнитную физику ни с его гипотезой о планетных силах, убывающих обратно пропорционально расстоянию, ни с собственными точными законами планетного движения. В таком обращении с наукой физик Галилей видел проявление “слишком свободного” ума, а попросту – легкомыслие. По поводу же исследований Гильберта он, высоко их оценив, пожелал, чтобы тот был “немного больше математиком”. Не потому что Галилей любил математику, а потому что математически точный язык открывает путь к экспериментальной проверке и, стало быть, к точному знанию.
Фундаментальный физик Галилей мог смотреть на законы Кеплера как на математические соотношения, не менее изящные, чем космография планет юного Кеплера, но и не более проникающие в физическую суть планетной системы. Через две точки можно провести только одну прямую, а через множество точек планетных наблюдений – сколько угодно разных кривых, в том числе, быть может, и изящных. С планетами не поэкспериментируешь, меняя параметры их движения. Поэтому Галилей старался проникнуть в фундаментальные законы планетной физики, опираясь на земной эксперимент, который надо придумать, и используя простейшую орбиту из возможных – круговую, тем более что орбиты Земли и Венеры почти точно круговые.
Чтобы вывести закон гравитации, надо было слово “притяжение” сделать физическим понятием, доступным для экспериментального исследования. Надо было связать это понятие с измеримыми величинами, прежде всего с самим движением. Это и сделал Ньютон. А до того о планетных силах и их зависимости от расстояния можно было лишь говорить.
Самый ранний “разговор” о силе, пропорциональной 1/R2, состоялся в книге французского астронома Буйо в 1645