Studies in the Theory of Descent, Volume I. Weismann August. Читать онлайн. Newlib. NEWLIB.NET

Автор: Weismann August
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
rel="nofollow" href="#litres_trial_promo">Plate I.) has a sprinkling of deep black scales at the base of the wings on the upper side, while the tips are more grey, and have in all cases much less black than in the summer form; on the underside the difference lies mainly in the frequent breadth, and dark greenish-black dusting, of the veins of the hind wings in the winter form, while in the summer form these greenish-black veins are but faintly present.

      I placed numerous specimens of the summer brood, immediately after their transformation into chrysalides, in the refrigerator (0°-1° R.), where I left them for three months, transferring them to a hothouse on September 11th, and there (from September 26th to October 3rd) sixty butterflies emerged, the whole of which, without exception – and most of them in an unusually strong degree – bore the characters of the winter form. I, at least, have never observed in the natural state such a strong yellow on the underside of the hind wings, and such a deep blackish-green veining, as prevailed in these specimens (see, for instance, Figs. 10 and 11). The temperature of the hothouse (12°-24° R.) did not, however, cause the emergence of the whole of the pupæ; a portion hibernated, and produced in the following spring butterflies of the winter form only. I thus succeeded, with this species of Pieris, in completely changing every individual of the summer generation into the winter form.

      It might be expected that the same result could be more readily obtained with A. Levana, and fresh experiments were undertaken, in order that the pupæ might remain in the refrigerator fully two months from the period of their transformation (9–10th July). But the result obtained was the same as before – fifty-seven butterflies emerged in the hothouse14 from September 19th to October 4th, nearly all of these approaching very near to the winter form, without a single specimen presenting the appearance of a perfect Levana, while three were of the pure summer form (Prorsa).

      Thus with Levana it was not possible, by refrigeration and retardation of development, to change the summer completely into the winter form in all specimens. It may, of course, be objected that the period of refrigeration had been too short, and that, instead of leaving the pupæ in the refrigerator for two months, they should have remained there six months, that is, about as long as the winter brood remains under natural conditions in the chrysalis state. The force of this last objection must be recognized, notwithstanding the improbability that the desired effect would be produced by a longer period of cold, since the doubling of this period from four to eight weeks did not produce15 any decided increase in the strength of the transformation. I should not have omitted to repeat the experiment in this modified form, but unfortunately, in spite of all trouble, I was unable to collect during the summer of 1873 a sufficient number of caterpillars. But the omission thus caused is of quite minor importance from a theoretical point of view.

      For let us assume that the omitted experiment had been performed – that pupæ of the summer brood were retarded in their development by cold until the following spring, and that every specimen then emerged in the perfect winter form, Levana. Such a result, taken in connexion with the corresponding experiment upon Pieris Napi, would warrant the conclusion that the direct action of a certain amount of cold (or of retardation of development) is able to compel all pupæ, from whichever generation derived, to assume the winter form of the species. From this the converse would necessarily follow, viz. that a certain amount of warmth would lead to the production of the summer form, Prorsa, it being immaterial from which brood the pupæ thus exposed to warmth might be derived. But the latter conclusion was proved experimentally to be incorrect, and thus the former falls with it, whether the imagined experiment with Prorsa had succeeded or not.

      I have repeatedly attempted by the application of warmth to change the winter into the summer form, but always with the same negative result. It is not possible to compel the winter brood to assume the form of the summer generation.

       A. Levana may produce not only two but three broods in the year, and may, therefore, be said to be polygoneutic.16 One winter brood alternates with two summer broods, the first of which appears in July, and the second in August. The latter furnishes a fourth generation of pupæ, which, after hibernation, emerge in April, as the first brood of butterflies in the form Levana.

      I frequently placed pupæ of this fourth brood in the hothouse immediately after their transformation, and in some cases even during the caterpillar stage, the temperature never falling, even at night, below 12° R., and often rising during the day to 24° R. The result was always the same: all, or nearly all, the pupæ hibernated, and emerged the following year in the winter form as perfectly pure Levana, without any trace of transition to the Prorsa form. On one occasion only was there a Porima among them, a case for which an explanation will, I believe, be found later on. It often happened, on the other hand, that some few of the butterflies emerged in the autumn, about fourteen days after pupation; and these were always Prorsa (the summer form), excepting once a Porima.

      From these experiments it appeared that similar causes (heat) affect different generations of A. Levana in different manners. With both summer broods a high temperature always caused the appearance of Prorsa, this form arising but seldom from the third brood (and then only in a few individuals), while the greater number retained the Levana form unchanged. We may assign as the reason for this behaviour, that the third brood has no further tendency to be accelerated in its development by the action of heat, but that by a longer duration of the pupal stage the Levana form must result. On one occasion the chrysalis stage was considerably shortened in this brood by the continued action of a high temperature, many specimens thus having their period of development reduced from six to three months. The supposed explanation above given is, however, in reality no explanation at all, but simply a restatement of the facts. The question still remains, why the third brood in particular has no tendency to be accelerated in its development by the action of heat, as is the case with both the previous broods?

      The first answer that can be given to this question is, that the cause of the different action produced by a similar agency can only lie in the constitution, i.e., in the physical nature of the broods in question, and not in the external influences by which they are acted upon. Now, what is the difference in the physical nature of these respective broods? It is quite evident, as shown by the experiments already described, that cold and warmth cannot be the immediate causes of a pupa emerging in the Prorsa or Levana form, since the last brood always gives rise to the Levana form, whether acted on by cold or warmth. The first and second broods only can be made to partly assume, more or less completely, the Levana form by the application of cold. In these broods then, a low temperature is the mediate cause of the transformation into the Levana form.

      The following is my explanation of the facts. The form Levana is the original type of the species, and Prorsa the secondary form arising from the gradual operation of summer climate. When we are able to change many specimens of the summer brood into the winter form by means of cold, this can only depend upon reversion to the original, or ancestral, form, which reversion appears to be most readily produced by cold, that is, by the same external influences as those to which the original form was exposed during a long period of time, and the continuance of which has preserved, in the winter generations, the colour and marking of the original form down to the present time.

      I consider the origination of the Prorsa from the Levana form to have been somewhat as follows: – It is certain that during the diluvial period in Europe there was a so-called ‘glacial epoch,’ which may have spread a truly polar climate over our temperate zone; or perhaps a lesser degree of cold may have prevailed with increased atmospheric precipitation. At all events, the summer was then short and comparatively cold, and the existing butterflies could have only produced one generation in the year; in other words, they were monogoneutic. At that time A. Levana existed only in the Levana form.17 As the climate gradually became warmer, a period must have arrived when the summer lasted long enough for the interpolation of a second brood. The pupæ of Levana, which had hitherto hibernated through the long winter


<p>15</p>

See Exps. 4, 9, and 11, Appendix I.

<p>16</p>

It seems to me very necessary to have a word expressing whether a species produces one, two, or more generations in the year, and I have therefore coined the expression mono-, di-, and polygoneutic from γονεύω, I produce.

<p>17</p>

[Eng. ed. In the German edition, which appeared in 1874, I was not able to support this hypothesis by geographical data, and could then only ask the question “whether in the most northern portion of its area of distribution, appears in two or only in one generation?” This question is now answered by the Swedish Expedition to the Yenisei in 1876. Herr Philipp Trybom, one of the members of this expedition, observed A. Levana at the end of June and beginning of July, in the middle of Yenisei, in 60°-63° N. (Dagfjärilar från Yenisei in Översigt ap k. Vertensk. Akad. Förhandlingon, 1877, No. 6.) Trybom found Levana at Yenisk on June 23rd, at Worogova (61° 5´) on July 3rd, at Asinova (61° 25´) on July 4th, at Insarowa (62° 5´) on July 7th, and at Alinskaja (63° 25´) on July 9th. The butterflies were especially abundant at the beginning of June, and were all of the typical Levana form. Trybom expressly states, “we did not find a single specimen which differed perceptibly from Weismann’s Figs. 1 and 2 (‘Saison-Dimorphismus’ Taf. I.).”

The Swedish expedition soon left the Yenisei, and consequently was not able to decide by observations whether a second generation possessing the Prorsa form appeared later in the summer. Nevertheless, it may be stated with great probability that this is not the case. The districts in which Levana occurs on the Yenisei have about the same isotherm as Archangel or Haparanda, and therefore the same summer temperature. Dr. Staudinger, whose views I solicited, writes to me: – “In Finnmark (about 67° N.) I observed no species with two generations; even Polyommatus Phlæas, which occurs there, and which in Germany has always two, and in the south, perhaps, three generations, in Finnmark has only one generation. A second generation would be impossible, and this would also be the case with Levana in the middle of Yenisei. I certainly have Levana and Prorsa from the middle of Amur, but Levana flies there at the end of May, and the summers are very warm.” The middle of Amur lies, moreover, in 50° N. lat., and therefore 10°-13° south of the districts of the Yenisei mentioned.

It must thus be certainly admitted that on the Yenisei A. Levana occurs only in the Levana form, and that consequently this species is at the present time, in the northernmost portion of its area of distribution, in the same condition as that in which I conceive it to have been in mid Europe during the glacial period. It would be of the greatest interest to make experiments in breeding with this single-brooded Levana from the Yenisei, i.e., to attempt to change its offspring into the Prorsa form by the action of a high temperature. If this could not be accomplished it would furnish a confirmation of my hypothesis than which nothing more rigorous could be desired.]