Studies in the Theory of Descent, Volume I. Weismann August. Читать онлайн. Newlib. NEWLIB.NET

Автор: Weismann August
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
preserved their present form.

      The var. Bryoniæ is, however, of quite special interest, since it makes clear the relation which exists between climatic variation and seasonal dimorphism, as will be proved in the next section. The correctness of the present theory must first here be submitted to further proof.

      It has been shown that the secondary forms of seasonally dimorphic butterflies do not all possess the tendency to revert in the same degree, but that this tendency rather varies with each individual. As the return to the primary form is synonymous with the relinquishing of the secondary, the greater tendency to revert is thus synonymous with the greater tendency to relinquish the secondary form, but this again is equivalent to a lesser stability of the latter; it must consequently be concluded that the individuals of a species are very differently influenced by climatic change, so that with some the new form must become sooner established than with others. From this a variability of the generation concerned must necessarily ensue, i.e., the individuals of the summer generation must differ more in colour and marking than is the case with those of the winter generation. If the theory is correct, the summer generations should be more variable than the winter generations – at least, so long as the greatest possible equalization of individual variations has not occurred through the continued action of warmth, combined with the constant crossing of individuals which have become changed in different degrees. Here also the theory is fully in accord with facts.

      In A. Levana the Levana form is decidedly more constant than the Prorsa form. The first is, to a slight extent, sexually dimorphic, the female being light and the male dark-coloured. If we take into consideration this difference between the sexes, which also occurs to a still smaller extent in the Prorsa form, the foregoing statement will be found correct, viz. that the Levana form varies but little, and in all cases considerably less than the Prorsa form, in which the greatest differences occur in the yellow stripes and in the disappearance of the black spots on the white band of the hind wing, these black spots being persistent Levana markings. It is, in fact, difficult to find two perfectly similar individuals of the Prorsa form. It must, moreover, be considered that the Levana marking, being the more complicated, would the more readily show variation. Precisely the same thing occurs in Pieris Napi, in which also the var. Æstiva is considerably more variable than the var. Vernalis. From the behaviour of the var. Bryoniæ, on the other hand, which I regard as the parent-form, one might be tempted to raise an objection to the theory; for this form is well known to be extraordinarily variable in colour and marking, both in the Alps and Jura, where it is met with at the greatest altitudes. According to the theory, Bryoniæ should be less variable than the winter form of the lowlands, because it is the older, and should therefore be the more constant in its characters. It must not be forgotten, however, that the variability of a species may not only originate in the one familiar manner of unequal response of the individual to the action of varying exciting causes, but also by the crossing of two varieties separately established in adjacent districts and subsequently brought into contact. In the Alps and Jura the ordinary form of Napi swarms everywhere from the plains towards the habitats of Bryoniæ, so that a crossing of the two forms may occasionally, or even frequently, take place; and it is not astonishing if in some places (Meiringen, for example) a perfect series of intermediate forms between Napi and Bryoniæ is met with. That crossing is the cause of the great variability of Bryoniæ in the Alpine districts, is proved by the fact that in the Polar regions this form “is by no means so variable as in the Alps, but, judging from about forty to fifty Norwegian specimens, is rather constant.” My friend, Dr. Staudinger, who has twice spent the summer in Lapland, thus writes in reply to my question. A crossing with Napi cannot there take place, as this form is never met with, so that the ancient parent-form Bryoniæ has been able to preserve its original constancy. In this case also the facts thus accord with the requirements of the theory.

      II. Seasonal Dimorphism and Climatic Variation

      If, as I have attempted to show, seasonal dimorphism originates through the slow operation of a changed summer climate, then is this phenomenon nothing else than the splitting up of a species into two climatic varieties in the same district, and we may expect to find various connexions between ordinary simple climatic variation and seasonal dimorphism. Cases indeed occur in which seasonal dimorphism and climatic variation pass into each other, and are interwoven in such a manner that the insight into the origin and nature of seasonal dimorphism gained experimentally finds confirmation. Before I go more closely into this subject, however, it is necessary to come to an understanding as to the conception “climatic variation,” for this term is often very arbitrarily applied to quite dissimilar phenomena.

      According to my view there should be a sharp distinction made between climatic and local varieties. The former should comprehend only such cases as originate through the direct action of climatic influences; while under the general designation of “local forms,” should be comprised all variations which have their origin in other causes – such, for example, as in the indirect action of the external conditions of life, or in circumstances which do not owe their present existence to climate and external conditions, but rather to those geological changes which produce isolation. Thus, for instance, ancient species elsewhere long extinct might be preserved in certain parts of the earth by the protecting influence of isolation, whilst others which immigrated in a state of variability might become transformed into local varieties in such regions through the action of ‘amixia,’24 i.e. by not being allowed to cross with their companion forms existing in the other portions of their habitat. In single cases it may be difficult, or for the present impossible, to decide whether we have before us a climatic form, or a local form arising from other causes; but for this very reason we should be cautious in defining climatic variation.

      The statement that climatic forms, in the true sense of the word, do exist is well known to me, and has been made unhesitatingly by all zoologists; indeed, a number of authentically observed facts might be produced, which prove that quite constant changes in a species may be brought about by the direct action of changed climatic conditions. With butterflies it is in many cases possible to separate pure climatic varieties from other local forms, inasmuch as we are dealing with only unimportant changes and not with those of biological value, so that natural selection may at the outset be excluded as the cause of the changes in question. Then again the sharply defined geographical distribution climatically governed, often furnishes evidence of transition forms in districts lying between two climatic extremes.

      In the following attempt to make clear the relationship between simple climatic variation and seasonal dimorphism, I shall concern myself only with such undoubted climatic varieties. A case of this kind, in which the winter form of a seasonally dimorphic butterfly occurs in other habitats as the only form, i.e., as a climatic variety, has already been adduced in a former paragraph. I allude to the case of Pieris Napi, the winter form of which seasonally dimorphic species occurs in the temperate plains of Europe, whilst in Lapland and the Alps it is commonly found as a monomorphic climatic variety which is a higher development of the winter type, viz., the var. Bryoniæ.

      Very analogous is the case of Euchloe Belia, a butterfly likewise belonging to the Pierinæ, which extends from the Mediterranean countries to the middle of France, and everywhere manifests a very sharply pronounced seasonal dimorphism. Its summer form was, until quite recently, described as a distinct species, E. Ausonia. Staudinger was the first to prove by breeding that the supposed two species were genetically related.25 This species, in addition to being found in the countries named, occurs also at a little spot in the Alps in the neighbourhood of the Simplon Pass. Owing to the short summer of the Alpine climate the species has in this locality but one annual brood, which bears the characters of the winter form, modified in all cases by the coarser thickly scattered hairs of the body (peculiar to many Alpine butterflies,) and some other slight differences. The var. Simplonia is thus in the Alps a simple climatic variety, whilst in the plains of Spain and the South of France it appears as the winter form of a seasonally dimorphic species.

      This Euchloe var. Simplonia obviously corresponds to the var. Bryoniæ of Pieris Napi, and it is highly probable that


<p>24</p>

[The word ‘Amixie,’ from the Greek ἀμιξία, was first adopted by the author to express the idea of the prevention of crossing by isolation in his essay “Über den Einfluss der Isolirung auf die Artbildung,” Leipzig, 1872, p. 49. R.M.]

<p>25</p>

[Eng. ed. In 1844, Boisduval maintained this relationship of the two forms. See Speyer’s “Geographische Verbreit. d. Schmetterl.,” i. p. 455.]