A History of Inventions, Discoveries, and Origins, Volume II (of 2). Johann Beckmann. Читать онлайн. Newlib. NEWLIB.NET

Автор: Johann Beckmann
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
agreeably to the then prevailing mode of princes, suffered himself to be duped with the hopes of making gold, improved the brass-works at Buntheim, below Harzburg, and by these means brought a great revenue to the electoral treasury.

      Another production of zinc, artificial white vitriol, was also long prepared, used and employed in commerce before it was known that it was procured from this metal. That it was not known before the middle of the sixteenth century, and that it was first made at Rammelsberg, may with confidence be affirmed. Schluter ascribes the invention of it to duke Julius, and places it in the year 1570: but it must be somewhat older than the above-quoted account of Rammelsberg; for the author, who wrote about 156594, relates, that in his time one citizen only, whom he calls Henni Balder, boiled white vitriol; and it appears that this person kept the process a secret. That the invention was not then new, is evident from his adding, that what its effects might be in medicine had not been examined; but that its use in making eye-water had been known almost as early as the time when it was discovered. This agrees with another account, according to which the method of boiling white vitriol was found out at the time when Christopher Sander, whose service to the Harz is well-known, was tithe-gatherer. Honemann says that Sander was tithe-gatherer at the mines of the Upper Harz before the year 1564, but that in this year he was principal tithe-gatherer and director of the mines and melting-houses at Goslar. Sander himself, in a paper dated August 3, 1575, seems to ascribe the invention of white vitriol to duke Julius95.

      At first this salt was called Erzalaun, a name occasioned by its likeness to alum, but afterwards it was more frequently known by those of Gallitzenstein, Golitzenstein, and Calitzenstein. The latter names however appear to be older than white vitriol itself; as we find that green vitriol, even before the year 1565, was called green Gallitzenstein. May not the word be derived from gallæ; because it is probable that vitriol and galls were for a long time the principal articles used for making ink and in dyeing? I am of opinion that the white vitriol, which is produced in the mines of Rammelsberg in the form of icicles, gave rise to the discovery and manufacture of this salt. The former, so early as the year 1565, was called white native vitriol, or white Gogkelgut, and was packed up in casks, and in that manner transported for sale96. I shall not here enter into the old conjectures respecting the origin and component parts of this vitriol; but it deserves to be remarked, that Henkel and Neumann97 observed in it a mixture of zinc, by which Brandt, a member of the Swedish council of mines, was led to prove, that, when pure, it consists of vitriolic acid and oxide of zinc; and this was afterwards confirmed by Hellot98.

      I come now, in the last place, to the history of this metal, which, when furnace-calamine was used, could not remain long unobserved, as it is sometimes found amongst it uncalcined in metallic drops. It is worthy of remark, that Albertus Magnus, who first described the use of furnace-calamine in making brass, is the oldest author in whose works mention is made of zinc. He calls it marchasita aurea. This was properly a stone, the metallic particles of which were so entirely sublimated by fire, that nothing but useless ashes remained behind. It contained fixed quicksilver, communicated a colour to metals, on which account it was well known to the alchemists, burned in the fire, and was at length entirely consumed. It was found in various parts, but that at Goslar was the best, because the copper it contained seemed to have in it a mixture of gold. To give this copper however a still greater resemblance to gold, some tin was added to it, by which means it became more brittle. This marchasita also rendered copper white as silver. Thus far Albertus. It obtained without doubt the name of marchasita aurea, because zinc communicates a yellow colour to copper; and for the same reason the Greeks and the Arabians called cadmia golden or aurea. But how could Albertus say that marchasite made copper white? Did he commit a mistake, and mean tin? To me this appears not probable, as at one time he seems to call it argentea. I imagine that he knew that copper, when mixed with as much zinc as possible, that is, according to Scheffer, eighty-nine pounds to a hundred, became white; and it appears that by this he wished to establish its affinity with quicksilver.

      The next author who gives an intelligible account of this metal is Theophrastus Paracelsus, who died in 1541. I do not however imagine that it was forgotten in this long interval, at least by those who were called alchemists. I am rather of opinion, that on account of the great hopes which it gave them by the colouring of copper, they described it purposely in an obscure manner, and concealed it under other names, so that it was not discovered in their works. There are few who would have patience to wade through these, and the few who could do so, turn their attention to objects of greater importance than those which occupy mine. Gold and silver excepted, there is no metal which has had formerly so many and so wonderful names as zinc99. For this reason, chemists long believed that zinc was not a distinct metal, but only a variety of tin or bismuth; and with these perhaps it may hence have been often confounded.

      The name zinc occurs first in Paracelsus. He expressly calls it a distinct metal, the nature of which was not sufficiently known; which could be cast, but was not malleable, and which was produced only in Carinthia. Was he then unacquainted with the zinc of Goslar, which was known at an earlier period to Albertus Magnus100? George Agricola, who wrote about the year 1550, speaks however of the Goslar zinc, but he calls it liquor candidus, and in German conterfey101. Mathesius, who published his sermons in 1562, says, “at Freyberg there is red and white zinc.” Perhaps he did not mean the metal, but minerals that contained zinc. George Fabricius, who died in 1571, conjectures that stibium is what the miners call cincum, which can be melted, but not hammered.

      It is seen by these imperfect accounts that this metal must have been scarce, even in the middle of the sixteenth century, and that it was not in the collection of Agricola, which was considerable for that period. Libavius, who died in 1616, mentions it several times, but he regrets, in one of his letters, that he had not been able to procure any of it102. Was this owing to the prohibition of duke Julius, by which it was forbidden to be sold? This prohibition is quoted by Pott from Jungii Mineralogia, with which I am unacquainted; but as Pott has already, by his unintelligible quotations, made me spend many hours to no purpose, I shall not waste more in searching for it. The prohibition alluded to is mentioned neither by Rehtmeier nor by any other author. The foolish taste for alchemy, which prevailed then at the duke’s court, makes it not altogether improbable that one was issued103; and if that was really the case, it was occasioned not so much by any dread of this metal being misused, as Pott thinks, but by the high hopes which were entertained of its utility in making gold. The first accurate and certain account of the method of procuring zinc at Goslar, is, as far as I know, given by Lœhneyss, in 1617, though he considers it to be the same as bismuth104. Joh. Schrœder of Westphalia, who died in 1664, calls it marcasita pallida.

      The first person who purposely procured this metal from calamine, by the addition of some inflammable substance, was undoubtedly Henkel, who gave an account of his success in the year 1741, though he concealed the whole process105. After him, Dr. Isaac Lawson, a Scotsman, seems to have made experiments which proved the possibility of obtaining zinc in this manner on a large scale; and in 1737 Henkel heard that it was then manufactured in England with great advantage. Of this Lawson I know nothing more than what is related by Dr. Watson106. Anthony von Swab, member of the Swedish council of mines, procured this metal afterwards from calamine by distillation, in 1742; as did Marggraf in 1746, who appears however not to have been acquainted with the Swedish experiment. In the year 1743, one Champion established zinc works at Bristol, which were continued by his successor James Emerson, who established works of the like kind at Henham, in the neighbourhood. The manner in which the metal was procured, has been described by Dr. Watson in his Chemical Essays.

      The greater part of this


<p>94</p>

“White vitriol also is made at Goslar, but by one citizen only, named Henni Balder. It is not procured by the evaporation of copper like other vitriol; but when large quantities of ore are roasted in the furnaces, a red substance is from time to time collected on the refuse of the ore, and found in some places half an ell thick. This substance, which is saltish, is formed into a lye, and boiled in small leaden pans. The rest of the process I do not know, but I observed that it crystallizes like saltpetre, but is stronger and whiter. It is also cast into small cakes about the thickness of one’s hand. This vitriol is employed by the leather-dressers, and may be used for many things instead of alum; but it cannot be used in dressing white skins, because it makes them yellowish.”

<p>95</p>

Bruckmann, ii. p. 446. [Schwartze, in his Pharm. Tabell. 2nd edit. p. 779, states that white vitriol was known towards the end of the thirteenth or at the commencement of the fourteenth century.]

<p>96</p>

Calvor, Historische Nachricht, p. 199 and 200. Properly it is written and pronounced jöckel. It is very remarkable that in Iceland this word at present signifies icicles.

<p>97</p>

Chemie, von Kessel, iv. 2, p. 832, where may be found the old opinions on this subject.

<p>98</p>

Brandt, in Acta Upsaliens. 1735. Hellot, in Mémoires de l’Acad. des Sciences, Paris, 1735, p. 29. [Sulphate of zinc or white vitriol is at present manufactured in considerable quantity for pharmaceutical purposes, and for the calico-printer.]

<p>99</p>

A great many may be found collected in Fuchs, Geschichte des Zinks. Erfurt, 1778, 8vo.

<p>100</p>

Paracelsi Opera. Strasb. 1616, fol. I shall here transcribe the principal passage. Of zinc: – There is another metal, zinc, which is in general unknown. It is a distinct metal of a different origin, though adulterated with many other metals. It can be melted, for it consists of three fluid principles, but it is not malleable. In its colour it is unlike all others, and does not grow in the same manner; but with its ultima materia I am as yet unacquainted, for it is almost as strange in its properties as argentum vivum. It admits of no mixture, will not bear the fabricationes of other metals, but keeps itself entirely to itself.

<p>101</p>

De Re Metallica, lib. ix. p. 329.

<p>102</p>

In J. Hornung’s Cista Medica. Lipsiæ.

<p>103</p>

How much duke Julius, who in other respects did great service to his country, suffered himself to be duped by the art of making gold, appears from an anecdote given by Rehtmeier, p. 1016. Of this anecdote I received from M. Ribbentrop an old account in manuscript, which one cannot read without astonishment. There is still shown, at the castle of Wolfenbuttle, an iron stool, on which the impostor, Anna Maria Zieglerinn, named Schluter Ilsche, was burnt, February 5, 1575.

<p>104</p>

Page 83: – “When the people at the melting-houses are employed in melting, there is formed under the furnace, in the crevices of the wall, among the stones where it is not well plastered, a metal which is called zinc or conterfeht; and when the wall is scraped, the metal falls down into a trough placed to receive it. This metal has a great resemblance to tin, but it is harder and less malleable, and rings like a small bell. It could be made also, if people would give themselves the trouble; but it is not much valued, and the servants and workmen only collect it when they are promised drink-money. They however scrape off more of it at one time than at another; for sometimes they collect two pounds, but at others not above two ounces. This metal, by itself, is of no use, as, like bismuth, it is not malleable; but when mixed with tin, it renders it harder and more beautiful, like the English tin. This zinc or bismuth is in great request among the alchemists.”

<p>105</p>

Kieshistorie, p. 571, and particularly p. 721.

<p>106</p>

Pott refers to Lawson’s Dissert. de Nihilo, and quotes some words from it; but I cannot find it; nor am I surprised at this, as it was not known to Dr. Watson. – See Chemical Essays, iv. p. 34. Pryce, in Mineral. Cornub., p. 49, says, “The late Dr. J. Lawson, observing that the flowers of lapis calaminaris were the same as those of zinc, and that its effects on copper were also the same with that semi-metal, never remitted his endeavours till he found the method of separating pure zinc from that ore.” The same account is given in the supplement to Chambers’s Dictionary, 1753, art. calm. and zinc; and in Campbell’s Political Survey of Britain, ii. p. 35. The latter however adds, that Lawson died too early to derive any benefit from his discovery.