О принципе противоречия у Аристотеля. Критическое исследование. Ян Лукасевич. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ян Лукасевич
Издательство: ЦГИ Принт
Серия:
Жанр произведения: Философия
Год издания: 1910
isbn: 978-5-98712-038-5
Скачать книгу
его в XVIII главе под названием «Принцип противоречия и конструкции разума». Стандартная формулировка этого парадокса выглядит так. Пусть K – множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то по определению K оно не должно быть элементом K – противоречие. Если нет – то по определению K оно должно быть элементом K – вновь противоречие. Таким образом, в этой конструкции разума мы получаем, что доказуемы оба высказывания (KK) и – (KK), а следовательно, и их конъюнкция. Тогда доказуема произвольная формула B (см. выше). Хотя Лукасевич и говорит здесь, что он не будет пытаться решить эту проблему, но, тем не менее, отмечает, что «у нас есть выбор: либо не использовать принцип противоречия, либо отбросить принцип исключенного третьего[36]». Что касается принципа исключенного третьего, то при формулировке парадокса Рассела без него можно обойтись (см. примечание 2 к гл. XVIII), а вот не применение или ограничение принципа противоречия в самой теории множеств выливается в построение паранепротиворечивой теории множеств (см. [Brady 1989]).

      Спустя более полувека после публикации этого парадокса в книге [Френкель и Бар-Хиллел 1966: 18], ставшей классикой, подчеркивается: «С самого начала следует уяснить, что в традиционной трактовке логики и математики не было решительно ничего, что могло бы служить в качестве основы для устранения антиномии Рассела. ‹…› Некоторый отход от привычных способов мышления явно необходим, хотя место этого отхода заранее не ясно». Можно только догадываться, что испытывал Лукасевич, поглощенный мыслью о построении новой логики, когда столкнулся с очень простой, но явно противоречивой конструкцией разума в виде парадокса Рассела.

      Обнаружение противоречий в «области априорных конструкций сознания», а также идея Мейнонга[37] о противоречивых, т. е. невозможных объектах типа «круглый квадрат», для которых принцип противоречия не имеет места (1907 г.), несомненно вдохновляют Лукасевича на критику принципа противоречия. С пафосом он обвиняет в противоречиях самого Аристотеля, погруженного в волны противоречия, «которые захлестывают, кажется, весь мир!» (гл. XIII). Последние слова весьма примечательны: если мир таков, то какой должна быть логика в этом мире? Заметим, что у Лукасевича в сильнейшей степени развито чувство соответствия между онтологией и логикой, индетерминистская концепция мира привела его в дальнейшем к «индерменистской» (трехзначной) логике.

      8. Возникает вопрос, почему, несмотря на дерзкий характер книги, революция в логике так и не состоялась? Как это ни странно, но Лукасевич почувствовал, что объект, исходный материал, основание переворота, т. е. сам принцип противоречия оказался слишком сложным для этой цели[38]. Показательно, что в ходе написания книги отрицательное отношение Лукасевича к принципу противоречия постепенно смягчается и критика направляется не столько на принцип противоречия, сколько на его абсолютизацию Аристотелем. Отвергая


<p>36</p>

Принцип исключенного третьего (лат. tertium non datur) Лукасевич формулирует так: два противоречащих высказывания не являются одновременно ложными, а следовательно, одно из них должно быть истинным.

<p>37</p>

В книге имеется ряд ссылок на А. Мейнонга; в данном случае см. гл. XVII. Интересно, что Мейнонг во втором издании своей известной работы «Uber Annahmen» (Leipzig, 1910: 228) цитирует абстракт [Łukasiewicz 1910b] данной книги Лукасевича.

<p>38</p>

На самом деле для этого еще не пришло время, поскольку логическая техника не было достаточно развита и осмыслена, чтобы уметь работать с противоречиями. Только в 1948 г., другим выдающимся представителем Львовско-Варшавской школы, а именно С. Яськовским, была сконструирована первая система паранепротиворечивой логики (см. английский перевод в [Jaskowski 1967]).