О принципе противоречия у Аристотеля. Критическое исследование. Ян Лукасевич. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ян Лукасевич
Издательство: ЦГИ Принт
Серия:
Жанр произведения: Философия
Год издания: 1910
isbn: 978-5-98712-038-5
Скачать книгу
все есть привходящее и что нет бытия человеком или бытия живым существом в собственном смысле» (Метафизика Г 4, 1007а 21-23). То есть, перефразируя, тот, кто отрицает принцип противоречия, отрицает суть самого бытия, и как следствие, самого себя. А это ведет к краху основной метафизической концепции Аристотеля – концепции эссенциализма (учения о сущности). Интересно дальнейшее развитие мысли Аристотеля, выходящее за рамки его главного аргумента: «Далее, если относительно одного и того же вместе было бы истинно все противоречащее одно другому, то ясно, что все было бы одним [и тем же]» (Метафизика Г 4, 1007 b 19-20).

      Лукасевич обращает внимание на явную непоследовательность Аристотеля, который утверждает, что нет и не может быть никакой надобности в доказательстве онтологического или логического принципа противоречия, но, тем не менее, настойчиво пытается доказать их пятью различными способами. При этом происходит или подмена тезиса, или предвосхищение основания, или доказывается нечто другое, что вообще не относится к принципу противоречия. Но с другой стороны, как считает Лукасевич, если этот принцип признан истинным, то он должен быть доказан.

      Из проведенного им анализа взаимоотношений принципа противоречия с другими логическими законами следует, что этот принцип не является исходным, не является самым простым, не является очевидным, не является обязательным для других законов и не является независимым. Более того, в обширном дополнении[30] к своей книге Лукасевич показывает, что принцип противоречия выводим из других законов[31]. Все это дает ему право не считать принцип противоречия таким, каким его представляет Аристотель. В главе XVI под названием «Неаристотелева логика», Лукасевич пытается создать контекст, в котором принцип противоречия не работает, однако само построение новой логики откладывается. На этом мы остановимся позже.

      6. Такова внешняя, видимая сторона происходящего. На самом деле под этим кроется нечто гораздо большее, а именно, попытка переосмысления границ человеческого мышления. Открытие неевклидовых геометрий, сделанное в первой половине XIX века К.Ф. Гауссом, Н.И. Лобачевским и Я. Бояйи, стало событием, которое повергло в смятение многие великие умы. Вплоть до XIX века никто не сомневался, что евклидова геометрия описывает единственно возможный реальный физический мир, и вдруг – революция в области человеческого сознания, приведшая к полному пересмотру научных представлений о геометрии Вселенной. Можно утверждать, что принцип противоречия Аристотеля стал для Лукасевича тем же самым, что пятый постулат геометрии Евклида о параллельности[32], отвергнутый вышеупомянутыми учеными. Вот как об этом пишет Лукасевич во вступлении к своей книге: «…действительно ли, из всех [принципов] этот принцип является краеугольным камнем всей нашей логики, или его можно преобразовать и даже убрать, создав систему неаристотелевой логики подобно тому, как посредством преобразования аксиомы о параллельных,


<p>30</p>

Дополнение называется «Принцип противоречия и символическая логика» и во многом основывается на книге Л. Кутюра «Алгебра и логика», изданной в 1905 г. (переведена на русс. яз. в 1909 г.)

<p>31</p>

Для Лукасевича оказалось весьма значимым, что принцип противоречия доказуем из других законов логики. Но здесь нет ничего необыкновенного. Приведем интересный пример, принадлежащий А.А. Маркову, который на страницах «Большой Советской Энциклопедии» в статье «Логика» (1973, т. 14, с. 599) приводит доказательство закона противоречия – .(Л & – Л) в исчислении интуиционистской логики Int. Это лишь означает, что закон уже предполагается данным, т. е. Int можно сформулировать так, чтобы одной из аксиом стал сам закон противоречия. Таким образом, если этот закон не предполагается, то его доказать нельзя.

<p>32</p>

Этот постулат в современной литературе формулируется так: в плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.