Б) Гиперболические точки (K <0):
Локально поверхность напоминает седло. Геодезические линии, начинающиеся из одной точки, экспоненциально расходятся. Эта особенность фундаментальна для геометрии Лобачевского и является основой конструктивных подходов в ГВИ. Такое расхождение геодезических линий может использоваться для пространственного рассеивания, задержки, удержания или локализации волн.
В) Параболические точки (K = 0):
Могут интерпретироваться как участки цилиндров или плоскостей. Вдоль одного направления поверхность не искривлена (κ = 0), а в другом – возможно иметь неплоскую форму. Геодезические линии ведут себя в таких участках подобно прямым в евклидовой геометрии. Поверхности с нулевой кривизной не способны инициировать сложные траектории или ловушки и используются в ГВИ ограниченно.
Сравнительный анализ показывает, что именно поверхности с отрицательной Гауссовой кривизной (K <0) обладают уникальными свойствами, чрезвычайно важными для ГВИ:
– Геодезические линии, хотя и расходятся локально, при наличии замкнутой геометрии (например, на псевдогиперболоиде) формируют сложные маршруты, многократные отражения и хаотически регулярные траектории, похожие на эргодические потоки.
– Волны, направляемые вдоль таких геодезических, многократно возвращаются в заданную область, вызывая длительное удержание энергии и формирование устойчивых интерференционных паттернов.
– Это создаёт условия для формирования линий фокуса, кольцевых мод или стоячих волн вдоль замкнутых геодезических – в отличие от точечной фокусировки в сферической (K > 0) геометрии.
Таким образом, гиперболические геометрии позволяют перейти от "точки-фокуса" к "области-фокуса", существенно расширяя функциональность устройств.
В приближении геометрической оптики или акустики поведение волн на таких поверхностях можно аппроксимировать геодезическими линиями. Однако для точного описания поведения поля – особенно вблизи резонансов, каустик, узлов интерференции и границ – необходимо учитывать полноволновую природу, дополнительно описанную дифракцией и интерференцией.
Геометрия в волновых уравнениях
В рамках физического описания волнового процесса на искривлённых псевдоповерхностях, геометрия входит в уравнения распространения (например, уравнение Гельмгольца) через два ключевых канала:
1. Метрика пространства (геометрическая структура):
Уравнения Максвелла, Гельмгольца и др. переписываются в системе координат, адаптированной к метрике поверхности. В пространстве с метрическим тензором g волновые уравнения принимают вид:
(1/ Sqrt /g/) d(Sqrt /g/ g d Ф) + k2Ф = 0
где
Ф – амплитуда поля,
k – волновое число,
g – обратный тензор метрики.
Кривизна и метрика напрямую влияют на распространение, фазу, направление и фокусировку волны.
2.