Заключение
На этом наш первый урок завершен. Рекомендуем ознакомиться с дополнительными материалы, которые можно скачать по ссылке https://gitverse.ru/dmitrypavlov74/DMBook. В папке L1 вы найдете два проекта: первый Chart2D посвящен построению графиков, второй Interpolation2D – интерполяционным методам.
Урок 2. 3D моделирование
Цифровые модели в пространстве
Введение
Создание компьютерных игр и CAD-систем невозможно без глубокого понимания того, как устроены трехмерные цифровые модели, как они создаются, трансформируются и освещаются. Все это (создание, трансформирование и освещение трехмерных объектов) мы подробно разберем в этом уроке. Также мы научимся строить поверхности, накладывать текстуры на объекты, рисовать тени и моделировать туман.
3D-моделирование
Цифровое 3D-моделирование – это процесс создания трехмерного представления объекта путем манипулирования ребрами и вершинами в моделируемом трехмерном пространстве. Вы наверняка видели результаты трехмерного моделирования в фильмах, анимациях и видеоиграх, которые наполнены фантастическими существами и структурами.
3D-моделирование используется в самых разных областях, включая инженерию, архитектуру, развлечения, кино, спецэффекты, разработку игр и коммерческую рекламу.
Сама тема 3D-моделирования необычайно интересна и очень востребована в современном мире. В IT-индустрии существует даже профессия 3D-дизайнера (например, 2D-дизайнеров не существует). Справедливости ради нужно отметить, что к разработчику 3D-систем предъявляются повышенные требования в области математики. Наш второй урок направлен как раз на то, чтобы читатель научился понимать основные этапы, связанные с работой в 3D-моделировании. Хочется сразу успокоить читателя: в математическом аппарате, необходимом для работы с 3D-моделями, нет ничего сложного, хотя знаний здесь понадобится больше, чем при построении графиков.
Преобразование точек в трехмерном пространстве
Поскольку трехмерные модели так или иначе задаются набором точек, чтобы изменять положение и размер объекта в пространстве, достаточно уметь изменять положение точки. Мы рассмотрим следующую группу преобразований: поворот, масштабирование и параллельный перенос. Именно к этим трем действиям и сводится трансформация трехмерной модели. Существует унифицированный подход к этим преобразованиям, а именно все эти операции можно свести к умножению матрицы на вектор. Для преобразования точек в трехмерном пространстве используются матрицы порядка 4x4.
рис. 2.1
Вращение
Далее для каждого преобразования укажем матрицу, которая ему соответствует. Сначала рассмотрим