Цифровое моделирование на C#. Дмитрий Павлов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дмитрий Павлов
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785006286184
Скачать книгу
разрыва отсутствуют. На каждом таком участке максимум и минимум будут достигнуты. Затем среди этих максимумов и минимумов нужно найти самое большое и самое маленькое значение и использовать их в качестве Ymax и Ymin, которые присутствуют в формуле для конвертации. Таким образом, мы снова сможем использовать формулы для конвертации точек из обычной системы в компьютерную.

      Быстрый рост приращения функции в окрестности точки разрыва типа «скачок через бесконечность» является необходимым условием разрыва, но не достаточным. Можно привести пример функции, когда значение приращения будет сколь угодно велико, но тем не менее функция может оставаться непрерывной. Данный подход построения разрывного графика не является универсальным и подходит только для некоторых функций. Наиболее правильным было бы проанализировать аналитическое уравнение функции и найти, например, точки, где знаменатель обращается в ноль. Такие точки всегда являются точками разрыва, но не всегда относятся к типу «скачок через бесконечность».

      Интерполяция

      Иногда нам известны лишь значения функции в некоторых точках. При этом аналитическое выражение функции неизвестно, получить его крайне трудно или вообще невозможно. Задача интерполяции ставится как задача восстановления значений функции внутри области определения. Основная идея здесь состоит в том, чтобы имея конечный набор значений, построить по нему аналитическое выражение таким образом, чтобы оно выдавало значения близкие к уже имеющимся.

      Делать это можно разными способами. В данной части урока мы рассмотрим два способа интерполяции – многочлен Лагранжа и линейный тренд.

      Многочлен Лагранжа

      Пусть имеется набор из N-значений функции (Xi, Yi), i=1… N. При этом сама функция нам неизвестна. Обладая этим набором мы хотели бы вычислять значение функции при любом значении X. Будем искать аналитическое выражение для искомой функции в виде многочлена степени N-1.

      Подставив значение каждой точки (Xi, Yi) в эту формулу, мы получим систему из N-уравнений относительно коэффициентов многочлена. Можно доказать, что если все Xi различны между собой, данная система всегда имеет единственное решение. Всегда существует многочлен, проходящий через каждую заданную точку. Получившуюся формулу можно использовать для вычислений значений в промежуточных точках. Недостатком этого подхода является то, что нужно решать линейную систему и если точек много, это может потребовать значительных вычислительных ресурсов.

      Французский математик Жозеф Луи Лагранж (1736—1813 г.г.) предложил следующую формулу для интерполяционного полинома:

      Используя данную формулу, мы можем вычислять значение многочлена, проходящего через заданный набор точек, не зная самих коэффициентов многочлена!

      Пример: Пусть даны следующий три точки (1, 1), (4, 2), (8, 5). Тогда, согласно формуле Лагранжа, значения многочлена, проходящего через эти точки, можно вычислять по формуле:

      Линейный тренд

      В случае