Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно. Бен Орлин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Бен Орлин
Издательство: Альпина Диджитал
Серия:
Жанр произведения:
Год издания: 2022
isbn: 9785002231782
Скачать книгу
доказало его правоту.

      Но самое знаменитое изобретение Эдуарда – «Ханойская башня». Наверняка вы видели такие игрушки. Башня состоит из трех стержней и набора дисков разного диаметра, образующих пирамиду. Цель состоит в том, чтобы перенести пирамиду с одного стержня на другой, перемещая по одному диску за раз и никогда не укладывая больший диск поверх меньшего.

      На первый взгляд башня, как бы это сказать помягче, детская забава. Тем не менее у нее множество практических применений. Психологи используют ее для проверки когнитивных способностей; преподаватели информатики – для обучения рекурсивным алгоритмам; инженеры-программисты – в качестве схемы ротации при резервном копировании данных.

      Почему праздное времяпрепровождение с легкостью превращается в научное исследование? Почему граница между работой и досугом такая зыбкая и проницаемая?

      Честно говоря, не знаю. Подозреваю, Эдуард тоже не знал. Можно сказать лишь одно: простые математические предпосылки приводят к глубоким выводам. Вот что такое математика на самом деле: сложное взаимодействие простых идей. Эдуард так говорил о «Точках-клеточках»: «Несмотря на всю свою незамысловатость, на практике эта игра преподносит сюрприз за сюрпризом».

ПОЧЕМУ ЭТА ИГРА ВАЖНА?

      Потому что бесполезная игра часто рождает наиполезнейшие идеи.

      В первой публикации, посвященной «Точкам-клеточкам», Эдуард Люка пространно рассуждает о ценности чистого любопытства. Он приводит множество исторических примеров и утверждает, что мы должны задавать вопросы спонтанно, какими бы глупыми они ни казались, поскольку неизвестно, насколько глубокие истины можно раскрыть.

      Его стиль довольно витиеватый, однако все равно я процитирую[9]:

      Каждый математик хочет вскрыть глубокие связи между несопоставимыми идеями. Вопрос в том, как этого добиться. Напряженно работать? Возможно. Терпеливо вычислять? Не повредит. Подсмотреть ответ в конце задачника? Простите, не угадали. Позволить воображению резвиться?

      А вот здесь есть о чем поговорить.

      Эдуард верил, что глубина возникает из игры, наука – из дуракаваляния. И он был не одинок. Элвин Берлекамп научился играть в «Точки-клеточки», когда ему было 6 лет, и спустя 70 лет все еще не утратил интереса к ним. Он играл на протяжении всей жизни. И где-то посредине странствия земного, когда он изучал электротехнику в Массачусетском технологическом институте, его осенило: можно использовать математику, чтобы создать «дуальную игру», которую он окрестил «Нити и монеты».

      Как выглядит эта альтернативная версия? Нарисуйте монеты, соединенные нитями. Один конец каждой нити приклеен к какой-либо монете, а другой – либо к соседней монете, либо к столу. Игроки поочередно разрезают нити ножницами. Если монета высвобождается, она достается вам, и вы зарабатываете право на еще один ход. Игра длится до тех пор, пока игроки


<p>9</p>

Кстати, если вам вдруг покажется, что в этой книге полно рассуждений, не имеющих отношения к делу, вспомните о размышлениях Эдуарда, предваряющих описание самой игры.