Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно. Бен Орлин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Бен Орлин
Издательство: Альпина Диджитал
Серия:
Жанр произведения:
Год издания: 2022
isbn: 9785002231782
Скачать книгу
математик Роза Петер, – потому что человек вдохнул в нее дух игры, и она дала ему его величайшую игру – умопостижение бесконечности».

      По моему скромному мнению, величайшая игра человечества – «Пол – это лава!», но время от времени я все же приобщаюсь к умопостижению бесконечности. Сердечно приглашаю и вас присоединиться к этому.

      I

      Геометрические игры

      Здесь вы познакомитесь с пятью играми, действие которых разворачивается в непохожих пространствах. Надеюсь, вы вынесете отсюда как минимум то, что есть разные виды пространства.

      Игра в «Точки-клеточки» напоминает вычерчивание градостроительного плана на миллиметровке. «Ростки» расползаются по змеящемуся, зыбкому пейзажу. «Супер-крестики-нолики» представляют собой фрактальный мир микрокосмов, макрокосмов, повторов. «Одуванчики» – игра продуваемых ветрами равнин и суровых векторов. Наконец, «Квантовые крестики-нолики» обитают в сверхъестественном пространстве, которое и на пространство-то почти не похоже. Охватите эти игры взглядом, и вы поймете, почему математики полагают, что геометрий много, что есть совершенно разные способы концептуализации пространства и его содержимого. «Одна геометрия не может быть более истинной, чем другая, – писал математик Анри Пуанкаре, – она может быть лишь удобнее».

      Тем не менее у всех этих игр есть одна общая черта: они разворачиваются на плоскости. Приключения в двумерном мире позволяют пролить свет на трехмерный, словно в театре теней наоборот.

      Быть современным человеком здорово. Наши предки, словно Тарзан, перепрыгивали с ветку на ветку, а я, словно Джейн[5], перепрыгиваю из книги в книгу, со страницы на страницу, с одного листа бумаги на другой. Мой мозг создан для трехмерного мира, в котором есть глубина и объем, а я нацелился на мир двумерных документов и экранов, тонких ломтиков толстенной реальности.

      Что ж, если нельзя вернуть обезьяну в джунгли, то геометрические игры позволяют сделать кое-что покруче: вернуть джунгли обезьяне. Они придают плоскости глубину, превращают двумерное в трехмерное.

      Объясню, что я имею в виду, на примере трех быстрых игр.

      Первая: классическая аркада 1979 года «Астероиды», где вы управляете стреловидным космическим кораблем, бороздящим просторы экрана. Этот экран – целая вселенная: долетев до края, выныриваешь с противоположной стороны. Вы будто бы живете на поверхности шара: куда ни двигайся, вернешься в исходную точку.

      Однако на самом-то деле это не сфера. Вначале, «склеив» левую и правую стороны экрана, разработчики игры создали своего рода цилиндрический мир. Затем, «склеив» верхний и нижний края экрана, они соединили торцы цилиндра. В результате получилась не сфера, а бублик. Любители математики знают, что по-научному его называют тор[6].

      Астероиды


<p>5</p>

Джейн Портер – девушка, в которую влюбляется Тарзан. – Прим. пер.

<p>6</p>

В книге «Новые правила для классических игр» Уэйн Шмитбергер предлагает применить пространственную логику «Астероидов» к «Скраблу», чтобы слово могло уходить вниз, за пределы игрового поля, и выныривать сверху или заезжать за правый край поля и продолжаться слева. «Один из забавных результатов игры в тороидальный "Скрабл", – пишет он, – заключается в том, что на игровом поле возникают комбинации, которые выглядят не просто жульническими, но и совершенно нелепыми с точки зрения общепринятых правил "Скрабла". Фрагмент слова или одинокая буква висят у края поля, казалось бы, сами по себе, хотя на самом деле это составная часть слова на противоположном краю поля. Отличный способ разозлить кибитцеров». Попробуйте применить ту же тороидальную логику к другим играм в этой книге: «Росткам», «Числовым цепочкам» и «Амазонкам».