– эвристические знания, накапливаемые интеллектуальной системой в процессе ее функционирования, а также заложенные в ней априорно, но не имеющие статуса абсолютной истинности в данной проблемной области. Обычно эвристические знания связаны с отражением в базе знаний неформального опыта решения задач. Эвристические знания основаны на правиле «большого пальца», т. е. на отказе от очевидно неприемлемых вариантов. Эвристические представления полезны для управления процессом рассуждения. При этом представление знаний базируется на стратегиях решения проблем в соответствии с опытом преодоления прошлых проблем, которым обладает эксперт;
– метазнания, дающие представление о других типах знаний, которые подходят для решения проблемы. Это «знания о знании», о том, как оно устроено и структурировано; «знания о получении знаний», т. е. приемы и методы познания (когнитивные умения) и оценка возможностей работы с ним. Иными словами, метазнания объединяют знания о способах использования знаний и знания о свойствах знаний. Задача применения метазнаний состоит в повышении эффективности решения проблем посредством правильного процесса рассуждения;
– структурные знания, связанные с информацией, основанной на правилах, наборах, концепциях и отношениях. Они представляют собой информацию, необходимую для разработки структур знаний и общей ментальной модели проблемы.
Архитекторы систем представления данных используют следующие логические структуры: списки и деревья для выстраивания иерархических знаний; семантические сети – схемы, применяемые для демонстрации здравого смысла или стереотипных знаний; скрипты – для описания события. Методология представления и использования знаний нашла широкое распространение в процессе развития экспертных систем – программного обеспечения, способного перенять у человека экспертизу в узких предметных областях, а также выступает сквозной низкоуровневой методологией, обеспечивающей возможность архитектурного планирования систем ИИ и баз знаний.
Области применения искусственного интеллекта. Работа с естественными языками и голосовые помощники. Обработка естественного языка (Natural Language Processing, NLP) является областью применения ИИ, которая занимается взаимодействием между компьютерами и людьми и использует естественный язык человека. Это направление, объединяющее ИИ и математическую лингвистику, изучает проблемы компьютерного анализа и синтеза естественных языков. Анализ в данном контексте означает возможность читать, распознавать, понимать и расшифровывать человеческие языки в целях выявления смысла передаваемой информации; синтез – способность генерировать текст с учетом грамматических и семантических правил естественного языка. Решение этих проблем позволит создать удобную форму взаимодействия компьютера и человека.
Типовое взаимодействие человека с компьютером на основе NLP выглядит следующим