Задача ранжирования ставит целью сортировку объектов по значениям некоего характеризующего их показателя. Выбор показателя для ранжирования система определяет автоматически. В некоторых случаях задача ранжирования решается без выделения конкретного показателя за счет последовательно определения «соседей». Задача ранжирования применяется в информационном поиске, например, при сортировке в поисковых системах результатов поиска по «релевантности» – условному значению, определенному системой; в рекомендательных системах (в частности, на основе ранее прослушанных композиций предоставляется совет о том, какую песню или стиль система рекомендовала бы прослушать в порядке убывания рекомендательного индекса).
Задача прогнозирования ставится с целью спрогнозировать свойства объекта на основе данных за прошлые периоды. На примере желания снять наличные денежные средства в банкомате задача прогнозирования позволяет определить время и объем спроса на наличные денежные средства в банкоматах, установить необходимую численность персонала для обработки обращений клиентов во время штатной и пиковой нагрузки, спрогнозировать качество продукции по данным о производственном процессе, качестве исходного материала и квалификации персонала.
Обучение без учителя – в этой методологии система ИИ должна быть способна не просто отнести объект к той или иной группе, а без дополнительной информации самостоятельно выделить такие группы и затем определять принадлежность к ним объектов. По методологии обучения без учителя решаются задачи кластеризации, ассоциативных правил, фильтрации выбросов, сокращения размерности, заполнения пропущенных значений и др.
Задача кластеризации заключается в том, чтобы сгруппировать объекты в кластеры, представляющие собой сравнительно однородные группы объектов. К задаче кластеризации сводятся:
– анализ социальных сетей в разных сферах жизни общества для проведения исследований;
– оценка политических предпочтений сегментов аудитории в разных регионах, социальных и демографических группах;
– прогнозирование политической активности и акций на основе выявления поведенческих паттернов;
– агитация, т. е. распространение информации о кандидатах, данные о которых гражданин еще не рассматривал, но разделяет ценности партии кандидата;
– определение центров формирования общественного мнения;
– выбор популярных личностей среди лояльных к бренду людей в целях повысить эффективность кампаний при помощи информационных вирусных технологий, побуждающих распространять сведения о продуктах и компании саму аудиторию, которой она предназначена;
– поиск подходящих