Важнейшей характеристикой, отличающей формальные организации, такие как гильдии, от неформальных кодексов поведения, является учреждение особых ролей (должностей) – например, старейшин, членов совета гильдии, которые принимают решения от лица членов гильдии.
Выбор гильдией старейшин, выявление частных интересов, которые могут иметь эти торговцы, и моделирование того, как гильдия справляется с проблемой принципала и агента, контролируя старейшин, – все это важные вопросы, заслуживающие тщательного анализа. Подобное моделирование гильдий как организаций предполагает, что они эксплицитно рассматриваются как институты в дополнение к институциональному элементу. Однако такой подход и включение этих вопросов в рассматриваемую модель только заслоняют главную идею. Поэтому мы пока отложим данные вопросы до будущих исследований, а гильдейская организация будет моделироваться как простой автомат. Рассматривая различные межтранзакционные связи и, таким образом, делая предположение об информации и возможностях, имеющихся у гильдии, мы можем оценить ее вклад в расширение торговли.
В данном разделе изучается роль гильдии как организации для коммуникации и координации. Предположим, что город обманул множество торговцев Т. Гильдия узнает об этом событии и объявляет эмбарго с вероятностью α(T)≥ μ(T). Эта спецификация означает, что чем больше торговцев обмануто, тем скорее гильдия поймет, что произошел обман. Однако отсюда не следует, что гильдия обладает большей информацией, чем та, которая имелась у торговцев в случае нескоординированного репутационного механизма, рассмотренного в игре 2. Из этого следует, что если гильдия узнает об обмане, она может сообщить об этом всем торговцам.
В этой игре гильдия объявляет эмбарго механически и не имеет средств к обеспечению его исполнения. В каждом раунде торговцы узнают об этом объявлении, но их никто не заставляет к нему прислушиваться. Это объявление становится всего лишь частью имеющейся у них и у города информации. Во всех отношениях эта игра такая же, как игра 1. Несмотря на то что гильдия не имеет возможности принуждать к исполнению своих решений, простое изменение в информации меняет множество равновесий.
Теорема IV.3
Предположим, что τ + κ ≤ 1 и
c ≤ γ (τ− c). (4)
Тогда следующие стратегии образуют совершенное равновесие Маркова в игре 3. Город не обманывает до тех пор, пока руководитель гильдии не объявит эмбарго; после того как объявлено эмбарго, город обманывает любого торговца, решившегося торговать с городом. Торговцы ведут торговлю в данный период тогда