Лабораторные стенды в рамках исследований и экспериментов. Разработка на основе аппаратно-вычислительной платформы. Сергей Александрович Евдокимов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Сергей Александрович Евдокимов
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785005984432
Скачать книгу
это интегральное преобразование одной комплекснозначной функции действительной переменной в другую. Тесно связано с превращением Лапласа.

      2

      Описывается коэффициентами «амплитуды», при условии разложения функции исходной на элементарные составляющие – гармонические колебания с разными частотами.

/9j/4AAQSkZJRgABAQIALwAvAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCADtAk8DAREAAhEBAxEB/8QAHQABAAICAwEBAAAAAAAAAAAAAAEHBQYDBAgCCf/EAFAQAAEDAwMCAgYGBgcFBAoDAAECAwQABQYHERIIIRMxFBUiQVHSUlNhcZSVFiMyQoGTCTNDYpGhsRcYJMHwNHWF0RklNWRlc4SS0+FEcoP/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQMCBAX/xAAzEQEAAgEDAgUCBQQBBQEAAAAAAQIRAyExEkEEE1FhgSJxMkJSkaEUI7HRYgUkweHwM//aAAwDAQACEQMRAD8A/VOgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUEHf3UEbnakbpkCvP4/CkTErOyOfu8vhUjPcnZIUT8KZg3TvVTO5uakziVj3N6bhuamQ3qkAO9WN0ico3PuouU70gNzUzmNhG9UmcJ3NTPqfZG53pE53Njc0zOTtmQEn4U+wnc1fskT6m52p3XO2Tc/CmxHBvRMm9SJmYyANJnEZU3NInKTODerGe5Mo3NPueyQaKmgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgUCgiiTux2QyX4VhuUuMvg8xEedbVsDxUEEg7H7RWPiJmmlaY9GujWLalYn1eVOgTXvVHUrH5mK655SzfcpdtNty+1TxCjw1SrPOa2CA0wlKD4Ehp1tSwO/NG+29eu8Ur4aur+7y2ma+JtSOOzh0+1+1WzzrITZYuTJTpRc4uQQrPbBAYHpT9ociMPzvSCjxilUh+S2lIVw2Y3779sPDTP1xf0i0faZaeKx00nT/Vifuv17qC0gi6ZXfWSXmbEfDrG/KjT7m9GfQlp6O+qO6gNqQHFqDyS2kJSStWwRy3G9mJ04pE/mxj5dYm02/4stE1XwKdk1jw6JffEu+SWVeQ2uN6K8PSLehTSVPcyjinYvtDiohXteXY7dTSeqaW5hx5keXGrHEsbededKrBDzm4XfKPAY02DZyhfoMlXoAcZS8jslsl3dtaVfque2+x77gZV1K3iMd5x8tLUmlsW5xn4d7J9YNOMNu+JY/kuTsQrlncv0HHopacW7Od4cyEpSklKQkjda9kgqSCQVJB0itvNnSjmIzPwzteK6cavacfy4bHrVpnkmpt+0bs2TJfy/GY7cq6W4xX0FlpaW1JUHVIDTnZ5rcIWop5p5bb1xS8alJ1Y4hpeJ0piLd+HTwbqB0g1IyTM8TwvNI9wuensn0TJWzGfZbt7vJxOynXUJbWAWHdyhSgOB3I7V3pxa+n53aXNvpv5feXWx/qO0kyTKbXh9tvd1Zn33xvU7lwx25QId28NPNRhTJEdEeWCj20llxYWj208k96UxeZiOeS2KR/CdSOovSfSe8v2DNbteW50S0G/y27bjVzugiW4KWgyn1w47qWW+TTg5OFI9knyG9cUt1Tt9lmNs+jNWjV7T2/5HZcRtGQePdshx4ZVbY/oj6fHtfNtHj8lICU+082OCiF+1+z2O3c5i3R3Tisak8S7+R6hYliV9xzGcgu3otzy2Y5b7Oz6O6v0mQ2yt5aOSElKNm21q3WUg7bAk7CpSPMtOnTnGS8+XHXbjOBjUPEJGeTNMm7uFZLb7Uze5MLwHRwhOuraQ74hT4Z3W2scQoqG25ABBMrOdPzK8Rt8mM2w0q3dU2iF2uUKBByqcuLdLgbVAvS7DcW7HMl8lIDTN1WwILqlLQpCODxC1jinkogV1pxmPuWzGenfHPszGd67abac3xrF8hud0kXl2Eu5Kt1ksNwvMpiGlQSZDzMBh5bDRUeKXHAlKilQSTxVtzExvMcevovTmInu2vGMpxzNcfgZXiV6h3ez3RhMiHNhuh1l9tXkpKh2P+oPY967mvTtKdUTtDUNQdfdNNML+zi2VzL4q7P21y8CLacZud2WiE2sIW+56FHdDaEqIBUvbzFZRbfHZ109W0OV3XbTFvB8f1EYv0ubZ8rYakWNEC0zJc65IcR4gLEFlpUpwhv21BLRKEhSlBIBI7t9Mw4rPVE57S69v6htJbngOSalsZM+1YcPMlF/VKtUyNMti2E83UPwnWkyW1hBCuBb5EFJSCCKlpiMd8zha5nMTtjf49XJh2vumec5Cxilom3yDdpkVc2HEv2M3OyOTWEFPNcYT47PpATzQVeFy4hSSdgRXfTMWmneOzi1oxFu092Izbqp0R08vt4x/K8gvMeRjzsRi7PxcXusyHb3JQQY6H5ceMthpSw63sFOA+2n41np2jUnb1x8tbxNOfTPwzWda7aa6d3trGciul0k3l2Eu5G22Sw3C9S2IaVBPpDzMBh5bDRUeKVuBKVEKCSSlQFmY3mO3fs4rPVj33h2m9adMJCMMeg5fDms6gvKj41IhpXIZuDiWFvqCXG0qQjZttZ3WUjdJHn2rqlbWmaY3xn4LTEV6/j5duVqlg0PLbpgsm+cb7ZLIjIp8X0Z4+Fb1LcQl7mEcFbqacHEKK/Z347Ebys9WnOrHEbfLqsTM9E8ywd36h9HbFpzj2rV3zViLiuVuQmbNNcjPhU1yXt6OhDPDxeSgd9igFKQpStglREzHVFO8pjMWtHFeXNnWu+m2nV7axnIbndJN5ehLuSrdZLBcLzKYiJUEmQ+zBYeWw0VHilxwJSohQSSUq2s4mJntG2Vp9URPr27ttxXKcdzawQMrxK9Q7vZ7mwmTDnQ3Q4y+2ryUlQ7H/kexq4mI3c1tFs4ZajooFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFAoFBBoksZkrLsjHboyy2txbkJ9CEJSSVEoOwA95rz+IrOpoXrHLXRno1q293geRp/rzpx056BapaTYFeHtRMfxhzCbtY3YLzUlES5MpSl2QjgXGxEltR3lApGw58ikbqHp6onWrS34bRET/tjG9b27xabR7+y5Mb0bn6aa66GWDH7JcpNgxHT6/WubdUxnVsCW45AUVPPbcUuvLS85sogqPIgHY7ZXn69WscdERDqfq0KWjmb5mFBW3p61d1C6dtToepeD3SNZsTczKVhGLCO8qXfLtKkS3G7m9G47qDYdDcVvYkqU46PNo1tExWPDXtvaMR7RH+3MzPXq0rxMzPuuqVpfqJf9cdG5Vru2Z4bGtWlcuHPvVptkVZjyS5A2huqnRZDCFK4rPEoDn6s7EAK3t8T4vUv2n/a3no8LSlY7/ts0fMNKNTYOnXWDY1wszy64ZAmF6mnzbS36XfCLUyg+CiJHaaeKVAt/qWv3Njurc149ObTp0xGJjUz/AI3basR5/OYmn877O7N0M1Kn5doprdqLi8ybn87OLcbjFgocmR8RsLUGWG4QWkbISFqQqQ8dkuPr8+IbA+lS9dHxOrNfzROZ9/SHjrNtTRrFvyzjH/n7sZl2G6xYXdM56ncH0zvN0zS3aoXdmDambc8JN1sT9uYtrakoKeS2Q+xGkBYHHi0pQJHtHxaUxS3l/lvtPtnu9Or/AHJrefy7/fHZummmj+d9PmqMy3YFjUu/SX9Gmwqc/HW3BuuURJr7n6+T+wh19yWtZClBRSVK3Ox21m1tPw39NXiJ2+zjMauvGtbv/DUttXdSMp0Ivd8n6x3+5WnLoN2y233jBWbNZseeVEfSsMrMFl95CHFqbStEiU2EpJdc3W0pbw010r2tj8uPdz4iuZ6P+Wywc2xPJ9RLV1E6qxsTyFo3jAZWD4tAlW15mdPbjRpjjjzcVaQ8A9JlFttKkhSwyFJBStBOelWdOlK25m/V9od6tvqxHER/LR7nhQtmp2jl71HxbVOLYLdo03ZpEnEIeRJkxboHoahGfVZR6Q37CXDwc2QSjuOSRt34jM+Ivavvj92kzH9PWvfqz/CIOn3UFlln6fmsxnZ1bp1uzi9yGb56KxLvNpsSoUxNvcuKn2HmEvqaLSFqfQpW7gC9nd9u9GK/1PXnH9v+fR5rzPlzGM/XG3s2mVojqbL1x1Zsz2Y5ffk5RpAix23Kr5AisNszXZExIYQ7BixmSW+aXCkJLgC9yduIGOneI8NMTHFs49W2MeIraPT9t2Gy9V/1N6SrR0r2bSHNLXnUm12rF5cadjEyPabM7EU0l+aq5qaEJ1loR1OtqYeWtz9UGxyV7OltPzdbT1JnERMW+PQm0aXmTjmJj75ZTJMOzTTrqQ1BzW9Zrqxj9gzq32dy13PBcSYyFC1QY/gOxJbZts5+OoKWXW9koaWHXPaUtKgOKxF6albRtNpnHs53mdO8