Лабораторные стенды в рамках исследований и экспериментов. Разработка на основе аппаратно-вычислительной платформы. Сергей Александрович Евдокимов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Сергей Александрович Евдокимов
Издательство: Издательские решения
Серия:
Жанр произведения:
Год издания: 0
isbn: 9785005984432
Скачать книгу
аналогового измерительного преобразования в АЦП с микропроцессорами, незаменимы в тех случаях, когда цифровая обработка принципиально непригодна, например, при высоких частотах, а также когда применение микропроцессоров нецелесообразно по техническим или экономическим причинам., например в несложных измерительных устройствах.

      1.3. Системы восприятия звуков

      Звук, как правило, представляется, как вибрация, что происходит через распределенную среду (в основном, по воздуху), которую царство животных воспринимает слуховыми органами. Продольная волна, которая распространяет звук, сначала скалывает, а потом разжимает молекулы веществ (таких как воздух), по которым он идёт. По результатам, в большинстве случаев, звук представляется ввиду графика давления из временем. (Показ. на рисунке 1.3.1).

      Рисунок 1.3.1 – График давления со временем

      Такое представление звуков на отрезке времени показывает более точный образ того, как звук реагирует в нашем мире, и, как вскорее всего можно услышать, это наиболее распространенное представление звуков, что используются по работе с аудио (цифровым). Когда технически описывать звуковую волну, можно запускать несколько ствойств, что имеют возможность лучше понимать протсходящее.

      Так, глядя на величину отклонения в первом случае, она вызванная волной давления (звукового); исходя из этого, можно измерить амплитуду звука. Это может быть измерено научной величиной давления в Па (Паскалях), но, как показала практика, удобнее распределять величину волны (амплитуды) за логарифмической шкале, что измеряется в дБ (в децибелах). В случае, когда давление звуковой волны регулярно возобновляется как периодическая структура целого, можно длиною целого периода за определённое количество колебаний вывести частоту волн. К примеру, если звук распространяется в среде со скоростью 321 метр за секунду (при обычной температуре скорость звука воздуха) состоит из повторяющийся волны через каждый метр, тот такой звук приравнивается к частоте 664 Гц (повтор за секунду). Как правило, всё что происходит в Большом мире природы, так как и звуки содержат много дискретных компонентов (частотных). Там, где шумные звуки, эта частота может совершенно не связанной или не сгруппированной по граничной типологии. Однако, в гармонических звуках, такие частоты не редко имеют разнос целыми коэффициентами, к примеру такие звуки как в виолончели в 200 Гц производит частоту не только на 200 (как основной), да и целому гармоническом ряду 200, 800, 1200 и т. д. (как показано на Рис. 1.3.2). Мужчина певец производя ту же самую мелодию имеет такие же компоненты частоты по голосу, хоть и в различных соотношениях к виолончели. Относительная сила (или отсутствие) этих гармонических элементов (так называемые обертоны) обеспечивает восприятие тембра звука.

      Когда звук распространяются и к ушам человека, в человеческого