Пересечение параллельных прямых. (Длинный) роман об отношениях, деньгах, работе и сексе. Книга 2. Сферическая геометрия. Олег Буяльский. Читать онлайн. Newlib. NEWLIB.NET

Автор: Олег Буяльский
Издательство: Издательские решения
Серия:
Жанр произведения: Современная русская литература
Год издания: 0
isbn: 9785005655141
Скачать книгу
я» (2014 г.)

      © Олег Буяльский, 2022

      ISBN 978-5-0056-5514-1 (т. 2)

      ISBN 978-5-0056-5500-4

      Создано в интеллектуальной издательской системе Ridero

      ДИСКЛЕЙМЕР

      Данная книга является художественным произведением, не пропагандирует и не призывает к употреблению наркотиков, алкоголя и сигарет. Книга содержит изобразительные описания противоправных действий, но такие описания являются художественным, образным, и творческим замыслом, не являются призывом к совершению запрещенных действий. Автор осуждает употребление наркотиков, алкоголя и сигар

      DE GEOMETRIA

      Современный мир развивается под знаком цифровизации. Цифрами и числами оперирует математика. Известный математик (и физик) Джон фон Нейман сказал одному из своих студентов: «Молодой человек, в математике мы не понимаем, а просто привыкаем».

      Получается, что даже самая точная из наук объясняет мир не лучше, чем любая из религий. Если не привыкнешь (не поверишь), – ответов не будет. И отвётов всегда больше, чем один. Например, казалось бы, очевидно, что параллельные прямые не пересекаются. Об этом древнегреческий математик Евклид говорит в пятом постулате своих «Начал». Это одна из основ классической геометрии.

      Прошло более двух тысяч лет. Детей в средней школе учат «евклидовой математике и геометрии». Однако, как это ни странно, за эти две тысячи лет математикам так и не удалось доказать «Аксиому параллельности Евклида». Постулат о параллельности так и остался предметом веры, хотя попытки превратить его в доказанный факт предпринимались неоднократно. Даже первый логотип Википедии представлял собой цитату под увеличительным стеклом из математической монографии Льюиса Кэрролла «Евклид и его современные соперники». В «Алисе в Стране чудес», кстати сказать, зашифрованы некоторые математические предпочтения Кэрролла.

      Согласно Евклидовой геометрии, две сходящиеся прямые обязательно пересекутся, но потом – после точки пересечения, они начнут расходиться. Чем дальше, тем больше. В социальной жизни говорят, что симпатия рождает дружбу, дружба рождает любовь (точка пересечения), но из любви появляется привычка (прямые начинают расходиться), из которой возникает неприязнь и равнодушие. Прямые расходятся всё дальше и дальше. Это так же неизбежно, как и их пересечение, если они изначально обращены друг к другу.

      Интересно, что в своём пятом постулате Евклид говорит о третьей прямой, которая пересекает две другие. Если внутренние углы, образованные пересечением этой третьей прямой и двумя другими меньше 90 градусов, то прямые пересекутся. Звучит сложно? Социальный фольклор сформулировал этот принцип гораздо проще: «Ничто так не укрепляет брак, как своевременный левак».

      Бывает ли по-другому?

      Оказалось, что да! Лобачевский придумал геометрию, в которой «через точку, не лежащую на данной прямой, проходят, по крайней мере, две прямые, лежащие в одной плоскости и не пересекающие её». Представляете? Да, это нелегко… но считается, что это возможно. Просто для этого нужно не наше привычное пространство, а тот мир, который представлял себе Лобачевский. И это ещё не всё! Есть ещё сферическая геометрия и геометрия Риммана, в которой не работаю принципы ни Евклида, ни Лобачевского! Там пересекаются любые две прямые. Чтобы вы не делали, пересечение всё равно будет. Оно неизбежно! И это тоже работает…

      Что это значит для простого человека, мозг которого не затуманен математическими абстракциями? Это значит, что в большинстве случаев человек не может изменить правила и законы своего пространства. Судьбу не изменить, но можно изменить карму. Человек (скорее всего) волен выбирать то пространство, в котором живёт и действует. Меняется пространство, меняются и правила. Поэтому и говорят: «Дай нам боже сил изменить то, что возможно изменить, принять то, что изменить не возможно, и мудрость – отличить одно от другого».

      ЧАСТЬ 1. ПОРА В ПУТЬ-ДОРОГУ1

      ОГОНЬ

      В конце недели Начальник написал ГГ, что его беспокоят сообщения Ёкселя о том, что есть проблемы с поставкой оборудования на фабрику. ГГ раздражало, что Начальник верил Ёкселю.

      «Это щёгол просто хочет выслужиться, а не помочь делу», – думал ГГ досадой. – «А Начальник не особенно стремиться разобраться, что происходит на самом деле… Лучше бы Ёксель завёл себе русскую подругу… Может быть, стал бы лучше понимать по-русски, и меньше совать нос туда, куда его не просят».

      ГГ не стал отвечать Начальнику сразу, опасаясь, что сгоряча наворотит лишнего и будет потом об этом жалеть. На следующее утро он отправил Начальнику краткий мессидж:

      – Спасибо за дополнительную информацию. Проверю работу существующих систем контроля за поставками оборудования и доложу статус.

      Когда ГГ писал подобные сообщения, он невольно вспоминал, как Алан Гринспен, бывший глава ФРС сказал однажды, что, если кому-то показалось, что понимает,


<p>1</p>

«Пора в путь-дорогу» – популярная песня композитора Василия Соловьёва-Седого на стихи Соломона Фогельсона, написанная для кинофильма «Небесный тихоход», созданного в 1945 году (Википедия).