Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119807698
Скачать книгу
S., Baccarelli, A., Zanobetti, A., Hoxha, M., Vokonas, P.S., Wright, R.O., and Schwartz, J. (2014). Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25: 68–78.

      35 Fry, R.C., Rager, J.E., Bauer, R., Sebastian, E., Peden, D.B., Jaspers, I., and Alexis, N.E. (2014). Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 306: L1129–L1137.

      36 Gant, T.W., Sauer, U.G., Zhang, S.D., Chorley, B.N., Hackermuller, J., Perdichizzi, S., Tollefsen, K.E., Van Ravenzwaay, B., Yauk, C., Tong, W., and Poole, A. (2017). A generic Transcriptomics Reporting Framework (TRF) foromics data processing and analysis. Regul. Toxicol. Pharmacol. 91 (Suppl 1): S36–S45.

      37 Gao, S., Lin, P.I., Mostofa, G., Quamruzzaman, Q., Rahman, M., Rahman, M.L., Su, L., Hsueh, Y.M., Weisskopf, M., Coull, B., and Christiani, D.C. (2019). Determinants of arsenic methylation efficiency and urinary arsenic level in pregnant women in Bangladesh. Environ Health 18: 94.

      38 Giraldez, M.D., Spengler, R.M., Etheridge, A., Godoy, P.M., Barczak, A.J., Srinivasan, S., De Hoff, P.L., Tanriverdi, K., Courtright, A., Lu, S., Khoory, J., Rubio, R., Baxter, D., Driedonks, T.A.P., Buermans, H.P.J., Nolte-’t Hoen, E.N.M., Jiang, H., Wang, K., Ghiran, I., Wang, Y.E., Van Keuren-Jensen, K., Freedman, J.E., Woodruff, P.G., Laurent, L.C., Erle, D.J., Galas, D.J., and Tewari, M. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 36: 746–757.

      39 Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16: 991–1006.

      40 Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia De Sousa, M., and Foti, M. (2019). miRNAs and NAFLD: From pathophysiology to therapy. Gut 68: 2065–2079.

      41 Gu, S. and Kay, M.A. (2010). How do miRNAs mediate translational repression? Silence 1: 11.

      42 Guduric-Fuchs, J., O’Connor, A., Camp, B., O’Neill, C.L., Medina, R.J., and Simpson, D.A. (2012). Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 13: 357.

      43 Guida, M., Marra, M.L., Zullo, F., Guida, M., Trifuoggi, M., Biffali, E., Borra, M., De Mieri, G., D’Alessandro, R., and De Felice, B. (2013). Association between exposure to dioxin-like polychlorinated biphenyls and miR-191 expression in human peripheral blood mononuclear cells. Mutat. Res. 753: 36–41.

      44 Guo, X., Yang, Q., Zhang, W., Chen, Y., Ren, J., and Gao, A. (2019). Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ. Pollut. 248: 66–73.

      45 Hagiwara, K., Katsuda, T., Gailhouste, L., Kosaka, N., and Ochiya, T. (2015). Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett. 589: 4071–4078.

      46 Hanna, J., Hossain, G.S., and Kocerha, J. (2019). The potential for microRNA therapeutics and clinical research. Front Genet. 10: 478.

      47 Harrill, A.H., Mccullough, S.D., Wood, C.E., Kahle, J.J., and Chorley, B.N. (2016). MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci. 152: 264–272.

      48 Herberth, G., Bauer, M., Gasch, M., Hinz, D., Roder, S., Olek, S., Kohajda, T., Rolle-Kampczyk, U., Von Bergen, M., Sack, U., Borte, M., Lehmann, I., and Lifestyle and Environmental Factors and Their Influence on Newborns Allergy Risk Study Group (2014). Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J. Allergy Clin. Immunol. 133: 543–550.

      49 Hill, M. and Tran, N. (2021). miRNA interplay: Mechanisms and consequences in cancer. Dis. Model Mech. 14 (4): dmm047662.

      50 Holman, N.S., Mosedale, M., Wolf, K.K., Lecluyse, E.L., and Watkins, P.B. (2016). Subtoxic alterations in hepatocyte-derived exosomes: An early step in drug-induced liver injury? Toxicol. Sci. 151: 365–375.

      51 Huang, Y., Yan, Y., Xv, W., Qian, G., Li, C., Zou, H., and Li, Y. (2018). A new insight into the roles of miRNAs in metabolic syndrome. Biomed. Res. Int. 2018: 7372636.

      52 Isakova, A., Fehlmann, T., Keller, A., and Quake, S.R. (2020). A mouse tissue atlas of small noncoding RNA. Proc. Natl. Acad. Sci. USA 117: 25634–25645.

      53 Izzotti, A. and Pulliero, A. (2014). The effects of environmental chemical carcinogens on the microRNA machinery. Int. J. Hyg. Environ. Health 217: 601–627.

      54 Janas, T., Janas, M.M., Sapon, K., and Janas, T. (2015). Mechanisms of RNA loading into exosomes. FEBS Lett. 589: 1391–1398.

      55 Janas, T., Janas, T., and Yarus, M. (2006). Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34: 2128–2136.

      56 Jenike, A.E. and Halushka, M.K. (2021). miR-21: A non-specific biomarker of all maladies. Biomark Res. 9: 18.

      57 Jin, Y., Wong, Y.S., Goh, B.K.P., Chan, C.Y., Cheow, P.C., Chow, P.K.H., Lim, T.K.H., Goh, G.B.B., Krishnamoorthy, T.L., Kumar, R., Ng, T.P., Chong, S.S., Tan, H.H., Chung, A.Y.F., Ooi, L., Chang, J.P.E., Tan, C.K., and Lee, C.G.L. (2019). Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci. Rep. 9: 10464.

      58 Juzenas, S., Lindqvist, C.M., Ito, G., Dolshanskaya, Y., Halfvarson, J., Franke, A., and Hemmrich-Stanisak, G. (2020). Depletion of erythropoietic miR-486-5p and miR-451a improves detectability of rare microRNAs in peripheral blood-derived small RNA sequencing libraries. NAR Genom. Bioinform. 2: lqaa008.

      59 Juzwik, C.A.S.S.D., Zhang, Y., Paradis-Isler, N., Sylvester, A., Amar-Zifkin, A., Douglas, C., Morquette, B., Moore, C.S., and Fournier, A.E. (2019). microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol. 182: 101664.

      60 Kagawa, T., Shirai, Y., Oda, S., and Yokoi, T. (2018). Identification of specific microRNA biomarkers in early stages of hepatocellular injury, cholestasis, and steatosis in rats. Toxicol. Sci. 166: 228–239.

      61 Koberle, V., Pleli, T., Schmithals, C., Augusto Alonso, E., Haupenthal, J., Bonig, H., Peveling-Oberhag, J., Biondi, R.M., Zeuzem, S., Kronenberger, B., Waidmann, O., and Piiper, A. (2013). Differential stability of cell-free circulating microRNAs: Implications for their utilization as biomarkers. PLoS One 8: e75184.

      62 Koenig, E.M., Fisher, C., Bernard, H., Wolenski, F.S., Gerrein, J., Carsillo, M., Gallacher, M., Tse, A., Peters, R., Smith, A., Meehan, A., Tirrell, S., and Kirby, P. (2016). The beagle dog microRNA tissue atlas: Identifying translatable biomarkers of organ toxicity. BMC Genom. 17: 649.

      63 Kong, A.P., Xiao, K., Choi, K.C., Wang, G., Chan, M.H., Ho, C.S., Chan, I., Wong, C.K., Chan, J.C., and Szeto, C.C. (2012). Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta. 413: 1053–1057.

      64 Koppers-Lalic, D., Hackenberg, M., Bijnsdorp, I.V., Van Eijndhoven, M.A.J., Sadek, P., Sie, D., Zini, N., Middeldorp, J.M., Ylstra, B., De Menezes, R.X., Wurdinger, T., Meijer, G.A., and Pegtel, D.M. (2014). Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8: 1649–1658.

      65 Kosaka, N., Iguchi, H., Hagiwara, K., Yoshioka, Y., Takeshita, F., and Ochiya, T. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288: 10849–10859.

      66 Kossinova, O.A., Gopanenko, A.V., Tamkovich, S.N., Krasheninina, O.A., Tupikin, A.E., Kiseleva, E., Yanshina, D.D., Malygin, A.A., Ven’Yaminova, A.G., Kabilov, M.R., and Karpova, G.G. (2017). Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim. Biophys. Acta Proteins Proteom. 1865: 664–673.

      67 Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Res. 47: D155–D162.

      68 Krauskopf, J., Caiment, F., Claessen, S.M., Johnson, K.J., Warner, R.L., Schomaker, S.J., Burt, D.A., Aubrecht, J., and Kleinjans, J.C. (2015). Application of high-throughput sequencing to circulating microRNAs reveals novel