77 Natsuhara, Y., Oka, S., Kaneda, K., and Yano, I. (1990). Parallel antitumor, granuloma forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure–activity relationships. Cancer Immunology, Immunotherapy 31: 99–106.
78 Oliveira, M.R., Magri, A., Baldo, C., Camilios-Neto, D., Minucelli, T., and Celligo, M.A.P.C. (2015). Review: sophorolipids a promising biosurfactant and its applications. International Journal of Advanced Biotechnology and Research 6 (2): 161–174.
79 Pacheco, G.J., Ciapina, E.M.P., Gomes, E.B., and Pereira-Junior, N. (2010). Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Brazilian Journal of Microbiology 41 (3): 685–693.
80 Patil, H.I. and Pratap, A.P. (2018). Production and quantitative analysis of trehalose lipid biosurfactants using high-performance liquid chromatography. Journal of Surfactants and Detergents 21 (4): 553–564.
81 Paulino, B.N., Pessôa, M.G., Mano, M.C.R., Molina, G., Neri-Numa, I.A., and Pastore, G.M. (2016). Current status in biotechnological production and applications of glycolipid biosurfactants. Applied Microbiology and Biotechnology 100: 10265–10293.
82 Philp, J.C., Kuyukina, M.S., Ivshina, I.B., Dunbar, S.A., Christofi, N., Lang, S., and Wray, V. (2002). Alkanotropic Rhodococcus ruber as a biosurfactant producer. Applied Microbiology and Biotechnology 59: 318–324.
83 Pinzon, N. and Ju, L.K. (2009). Improved detection of rhamnolipid production using agar plates containing Methylene blue and cetyltrimethyl ammonium bromide. Biotechnology Letters 31: 1583–1588.
84 Pinzon, N.M., Zhang, Q., Koganti, S., and Ju, L.K. (2009). Advances in bioprocess development of rhamnolipid and sophorolipid production. In: Biobase Surfactants and Detergents—Synthesis, Properties, and Applications (ed. D.G. Hayes, D. Kitamoto, D.K.Y. Solaiman, and R.D. Ashby), 77–105. Urbana, IL: AOCS Press.
85 Ramsay, B., McCarthy, J., Guerra-Santos, L., Kappeli, O., Fiechter, A., and Margaritis, A. (1988). Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n -alkanes as the carbon source. Canadian Journal of Microbiology 34 (11): 1209–1212.
86 Ribeiro, I.A., Bronze, M.R., Castro, M.F., and Ribeiro, M.H.L. (2012). Design of selective production of sophorolipids by Rhodotorula bogoriensis through nutritional requirements. Journal of Molecular Recognition 25 (11): 630–640.
87 Ribeiro, I.A., Bronze, M.R., Castro, M.F., and Ribeiro, M.H.L. (2013). Sophorolipids: improvement of the selective production by Starmerella bombicola through the design of nutritional requirements. Applied Microbiology and Biotechnology 97 (5): 1875–1887.
88 Rodrigues, L., Banat, I.M., Teixeira, J., and Oliveira, R. (2006). Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy 57 (4): 609–618.
89 Sana, S., Datta, S., Biswas, D., and Sengupta, D. (2018). Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochimica et Biophysica Acta - Biomembranes 1860 (2): 579–585.
90 Santos, D.K.F., Rufino, R.D., Luna, J.M., Santos, V.A., and Sarubbo, L.A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 18, 17 (3): 1–31.
91 Sarwar, A., Brader, G., Corretto, E., Aleti, G., Corretto, E., Abaidullah, M., Sessitsch, A., and Hafeez, F.Y. (2018). Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13 (6): 1–15.
92 Sato, S., Fukuoka, T., Saika, A., Koshiyama, T., and Morita, T. (2019). A New Screening Approach for Glycolipid-type Biosurfactant Producers Using MALDI-TOF/MS. Journal of Oleo Science 68 (12): 1287–1294.
93 Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar, A.G., and Chopade, B.A. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances 28 (4): 436–450.
94 Satpute, S.K., Bhawsar, B.D., Dhakephalkar, P.K., and Chopad, B.A. (2008). Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian Journal of Marine Sciences 37 (3): 243–250.
95 Sen, R. and Swaminathan, T. (2005). Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry 40: 2953–2958.
96 Sen, S., Borah, S.N., Bora, A., and Deka, S. (2017). Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microbial Cell Factories 16 (95): 1–14.
97 Seo, Y.S. and Shin, K.S. (2011). Optimal conditions and substrate specificity for trehalose production by resting cells of arthrobacter crystallopoietes n-08. Journal of Food Science and Nutrition 16 (4): 357–363.
98 Siegmund, I. and Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnology Techniques 5: 265–268.
99 Silva, R.C.F.S., Almeida, D.G., Rufino, R.D., Luna, J.M., Santos, V.A., and Sarubbo, L.A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Sciences 15 (7): 12523–12542.
100 Smyth, T.J.P., Perfumo, A., Marchant, R., and Banat, I.M. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In: Handbook of Hydrocarbon and Lipid Microbiology (ed. K.N. Timmis), 3705–3723. Berlin, Heidelberg: Springer.
101 Soberón-Chávez, G. (ed.) (2011). Biosurfactants, Microbiology monographs 20. eBook from Heidelberg: Springer, 127.
102 Solaiman, D., Ashby, R., Birbir, M., and Caglayan, P. (2016). Antibacterial activity of sophorolipids produced by Candida bombicola on gram-positive and gram negative bacteria isolated from salted hides. Journal of the American Leather Chemists Association 111: 358–364.
103 Souza, E.C., Vessoni-Penna, T.C., and Oliveira, R.P.S. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: an overview. International Biodeterioration & Biodegradation 89: 88–94.
104 Sudo, T., Zhao, X., Wakamatsu, Y., Shibahara, M., Nomura, N., Nakahara, T., Suzuki, A., Kobayashi, Y., Jin, C., Murata, T., and Yokohama, K.K. (2000). Induction of the differentiation of human HL60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33 (1–3): 259–264.
105 Takayama, K., Wang, C., and Besra, G.S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Society 18 (1): 81–101.
106 Tokumoto, Y., Nomura, N., Uchiyama, H. et al. (2009). Structural Characterization and Surface-Active Properties of a Succinoyl Trehalose Lipid Produced by Rhodococcus sp. SD-74. Journal of Oleo Science 102 (2): 97–102.
107 Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., and Stoineva, I. (2009). Isolation and characterization of trehalose tetraester biosurfactants from soil strain Micrococcus luteus BN56. Process Biochemistry 44: 135–141.
108 Uchida, Y., Misawa, S., Nakahara, T., and Tabuchi, T. (1989). Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agricultural and Biological Chemistry 53 (3): 765–769.
109 Varjani, S.J., Rana, D.P., Bateja, S., Sharma, M.C., and Upasani, V.N. (2014). Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India. International Journal of Innovative Research in Science Engineering and Technology 3 (2): 9205–9213.
110 Varjani, S.J. and Upasani, V.N. (2016). Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresource Technology 222: 195–201.
111 Varjani, S.J. and Upasani, V.N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology 232: 389–397.
112 Vijayakumar, S. and Saravanan, V. (2015). Biosurfactants-types, sources and applications. Research Journal of Microbiology 10 (5): 181–192.
113 Wang, Y., Nie,