3 Anderson, R.J. and Newman, M.S. (1933). The chemistry of the lipids of tubercle bacilli: XXXIII. Isolation of trehalose from the acetone-soluble fat of the human tubercle bacillus. The Journal of Biological Chemistry 101: 499–504.
4 Aparna, A., Srinikethan, G., and Hedge, S. (2011). Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. International Proceedings of Chemical, Biological & Environmental Engineering 6: 71.
5 Ashby, R.D., Solaiman, D.K.Y., and Foglia, T.A. (2008). Property control of sophorolipids: influence of fatty acid substrate and blending. Biotechnology Letters 30 (6): 1093–1100.
6 Azuma, M., Suzutani, T., Sazaki, K., Yoshida, I., Sakuma, T., and Yoshida, T. (1987). Role of interferon in the augmented resistance of trehalose 6,6’-dimycolate-treated mice to influenza virus infection. The Journal of General Virology 68: 835–843.
7 Bachmann, R.T., Johnson, A.C., and Edyvean, R.G.J. (2014). Biotechnology in the petroleum industry: an overview. International Biodeterioration and Biodegradation 86: 225–237.
8 Baeva, T.A., Gein, S.V., Kuyukina, M.S., Ivshina, I.B., Kochina, O.A., and Chereshnev, V.A. (2014). Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bulletin of Experimental Biology and Medicine 157 (2): 238–242.
9 Bajaj, A., Mayliraj, S., Mudiam, M.K.R., Patel, D.K., and Manickam, N. (2014). Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1, 1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresource Technology 167: 398–406.
10 Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology 87 (2): 427–444.
11 Bogaert, I.N.A.V., Saerens, K., Muynck, C., Develter, D.M., Soetaert, W., and Vandamme, E.J. (2007). Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology 76 (1): 23–34.
12 Borsanyiova, M., Patil, A., Mukherji, R., Prabhune, A., and Bopegamage, S. (2016). Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiologica (Praha). 61 (1): 85–89.
13 Bouassida, M., Ghazala, I., Ellouze-Chaabouni, S., and Ghribi, D. (2018). Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. Journal of Microbiology and Biotechnology 28 (1): 95–104.
14 Brandenburg, K. and Seydel, U. (1988). Infrared spectroscopy of glycolipids. Chemistry Physical Lipids 96 (1–2): 23–40.
15 Bryant, F.O. (1990). Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Applied Environmental Microbiology 56: 1494–1496.
16 Bungaruang, L., Gutmann, A., and Nidetzky, B. (2013). Leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Advanced Synthesis & Catalysis 355 (14–15): 2757–2763.
17 Cameotra, S.S. and Makkar, R.S. (1998). Synthesis of biosurfactants in extreme conditions. Applied Microbiology and Biotechnology 50 (5): 520–529.
18 Cappelletti, M., Presentato, A., Piacenza, E., Firrincieli, A., Turner, R.J., and Zannoni, D. (2020). Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology 104: 8567–8594.
19 Carrillo, P.G., Mardaraz, C., Pitta-Alvarez, S.I., and Giuliett, A.M. (1996). Isolation and selection of biosurfactant producing bacteria. World Journal of Microbiology & Biotechnology 12 (1): 82–84.
20 Christova, N., Lang, S., Wray, V., Kaloyanov, K., Konstantinov, S., and Stoineva, I. (2015). Production, structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. Journal of Microbiology and Biotechnology 25: 439–447.
21 Ciapina, E.M.P., Melo, W.C., Santa Anna, L.M.M., Santos, A.S., Freire, D.M.G., and Pereira, N. (2006). Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Applied Biochemistry and Biotechnology 131 (1–3): 880–886.
22 Cooper, D.G. and Goldenberg, B.G. (1987). Surface-active agents from two bacilllus species. Applied and Environmental Microbiology 53: 224–229.
23 Cortés-Sánchez, A.J., Hernández-Sánchez, H., and Jaramillo-Flores, M.E. (2013). Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiological Research 168 (1): 22–32.
24 Crouzet, J., Arguelles-Arias, A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., Hoff, G., Mazeyrat-Gourbeyre, F., Baillieul, F., Clément, C., Ongena, M., and Dorey, S. (2020). Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Frontiers in Bioengineering and Biotechnology 8: 1–11.
25 Davis, D.A. et al. (2001). The application of foaming for recovery of surfactin from B. subtilis ATCC 21332. Enzyme Microbiology Technology 28: 346–354.
26 DeBosch, B.J., Heitmeier, M.R., Mayer, A.L., Higgins, C.B., Crowley, J.R., Kraft, T.E., Chi, M., Newberry, E.P., Chen, Z., Finck, B.N., Davidson, N.O., Yarasheski, K.E., Hruz, P.W., and Moley, K.H. (2016). Trehalose inhibits solute carrier 2A (Slc2A) proteins to induce autophagy and prevent hepatic steatosis. Science Signaling 9 (416): 1.
27 Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews : MMBR 61 (1): 47–64.
28 Dogan, I., Pagilla, K.R., Webster, D.A., and Stark, B.C. (2006). Expression of Vitreoscilla haemoglobin in Gordonia amarae enhances biosurfactant production. Journal of Industrial Microbiology & Biotechnology 33: 693–700.
29 Dubey, K.V. et al. (2005). Adsorption–desorption process using wood–based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnology Progress 21: 860–867.
30 Esders, T.W. and Light, R.J. (1972). Glucosyl and acetyItransferases involved in the biosynthesis of glycolipids from Candida bogoriensis. The Journal of Biological Chemistry 10, 247 (5): 1375–1386.
31 Espuny, M.J., Egido, S., Rodón, I., Manresa, A., and Mercadé, M.E. (1996). Nutritional requirements of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnology Letters 18 (5): 521–526.
32 Fracchia, L., Banat, J., Cavallo, J., Ceresa, M., and Banat, C.I.M. (2015). Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering 2 (3): 144–162.
33 Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, J.P.T., and Banat, I.M. (2010). Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology 112 (6): 617–627.
34 Gein, S.V., Kuyukina, M.S., Ivshina, I.B., Baeva, T.A., and Chereshnev, V.A. (2011). In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63: 559–566.
35 Geys, R., Soetaert, W., and Bogaert, I.V. (2014). Biotechnological opportunities in biosurfactant production. Current Opinion in Biotechnology 30: 66–72.
36 Groves, E., Dart, A.E., Covarelli, V., and Caron, E. (2008). Molecular mechanisms of phagocytic uptake in mammalian cells. Cellular and Molecular Life Sciences 65: 1957–1976.
37 Gudiña, E.J., Rangarajan, V., Sen, R., and Rodrigues, L.R. (2013). Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences 34 (12): 667–675.
38 Hoq, M.M., Suzutani, T., Toyoda, T., Horiike, T., Yoshida, G., and Azuma, I.M. (1997). Role of gamma delta TCR + lymphocytes in the augmented resistance of trehalose 6,6’-dimycolate-treated mice to influenza virus infection. The Journal of General Virology 78: 1597–1603.
39 Im, J.H., Nakane, T., Yanagishita, H., Ikegami, T., and Kitamoto,