Nanotechnology-Enhanced Food Packaging. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527827725
Скачать книгу
are now designing packaging materials that prolong food and beverage life and boost consumer safety through the use of nanotechnology in daily-based consumer packaging [6]. Food processing and control are the main subjects of food industry-related nanotechnology research and development. Effective and intelligent packaging is the leading advancement of food packaging that aims to enhance product quality and consistency as well as to maximize product longevity. Most businesses and industrial design nano-packaging like time–temperature indicators (TTIs) can react to undesirable or damaging changes under the worse effects of climatic pollution. They can self-repair themselves, thus making this nano-packaging as “active and smart packaging.”

      Nanostructured food ingredients are developed to facilitate sensory attributes like appearance, taste, texture, and flavor. Nanotechnology increases the durability of different foods and reduces food waste caused by microbial infestation. Nanocarriers are presently used as a supply system without interfering with their basic morphology to transport food additives into food products. The particle size can directly affect the delivery of bioactive compounds to different sites since some cell lines have noticed that it is efficient to absorb only submicron nanoparticles but not larger microparticles [9–13].

      Nanotechnology provides effective distribution systems with all the functionality mentioned earlier for encapsulation formulation, emulsions, biopolymer matrices, clear solutions, and colloids. Nano-polymers are intended to replace traditional products for food packaging. Nanosensors may show the existence of pathogenic microbes, toxins, and adulterants in food [14]. Nanoparticles have greater characteristics of encapsulation and release performance than traditional embossing methods. By nanoencapsulation of the masks scent or taste, the interactions between active ingredients and the food network that govern the release of active agents can be monitored. This method guarantees the supply of desired food ingredients at the desired level of production, storage, and usage. This nano-packing method is consistent with other ingredients in the device against moisture, fire, chemicals, and biological degradation. Moreover, these nanotechnologies-based food nutrition delivery systems can reach deep into the tissues and effectively distribute active agents to the target sites in the body because of their smaller scale [15–18].

      1.2.1 Nanotechnology Applications in Preserving Meat Density, Taste, and Presentation

      These nanotechnology-based applications of modern nanocarriers can help the food industry preserve the meat color and taste and make the food colorful, visually attractive, and presentable for the consumers.

      1.2.2 Nanotechnology Applications for Maintaining the Food Nutrient Value

      Many bioactive compounds like lipids, short-chain fatty acids, functional chelates, probiotics, and antioxidants are vulnerable to acids and enzymes in the stomach and duodenum. The encapsulation of these bioactive compounds allows them not just to avoid such adverse conditions but also to readily assimilate easily. In addition to that, small edible nanoparticles are developed for significant health gain to increase the regular supply of pharmaceutical items, probiotics, vitamins, and fragile micronutrients. The different strategies for encapsulating miniatures to include nutrients such as protein and antioxidants more useful for specific nutritional and health benefits include nanocomposite, nano-emulsification, and nanostructure. Polymeric nanoparticles are sufficient to secure and transmit bioactive compounds to specific bioactive compound encapsulation functions (flavonoids and vitamins) [21–23].

      In functional foods, the bioactive components are sensitive to external factors and eventually deteriorated during transport and storage; nanoencapsulation of these bioactive nanocomponents improves its shelf life. Especially, nanoemulsion-based edible coating controls the fruit ripening and extends the shelf life of perishable commodity. Also, consumable nanocoats could be a barrier to the moisture on various foods and could provide colors, flavors, nutrients, enzymes, and anti-brews [24–26].