113 113 Chivero, P., Gohtani, S., Ikeda, S., and Nakamura, A. (2014). The structure of soy soluble polysaccharide in aqueous solution. Food Hydrocolloids 35: 279–286.
114 114 Yuan, C., Chen, M., Luo, J. et al. (2017). A novel water-based process produces eco-friendly bio-adhesive made from green cross-linked soybean soluble polysaccharide and soy protein. Carbohydr. Polym. 169: 417–425.
115 115 Fátima Seibel, N. and Beléia, A.D.P. (2008). Carboidratos das fibras de cotilédones e proteínas de produtos derivados de soja (Glycine max (L.) Merril). Cienc. Tecnol. Aliment. 28 (3): 607–613.
116 116 Willats, W.G.T., Mccartney, L., Mackie, W., and Knox, J.P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47: 9–27.
117 117 Beckham, G.T., Johnson, C.W., Karp, E.M. et al. (2016). Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42: 40–53.
118 118 Ogunsona, E., Ojogbo, E., and Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. Eur. Polym. J. 108: 570–581.
119 119 Copeland, L., Blazek, J., Salman, H., and Tang, M.C. (2009). Form and functionality of starch. Food Hydrocolloids 23: 1527–1534.
120 120 Thakur, R., Pristijono, P., Scarlett, C.J. et al. (2019). Starch-based films: major factors affecting their properties. Int. J. Biol. Macromol. 132: 1079–1089.
121 121 Saberi, B., Golding, J.B., Marques, J.R. et al. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biol. Technol. 137: 9–20.
122 122 Pellá, M.C.G., Silva, O.A., Pellá, M.G. et al. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem. 309.
123 123 Malherbi, N.M., Schmitz, A.C., Grando, R.C. et al. (2019). Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag. Shelf Life 19: 140–146.
124 124 Nawab, A., Alam, F., and Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 103: 581–586. https://doi.org/10.1016/j.ijbiomac.2017.05.057.
125 125 Pająk, P., Socha, R., Łakoma, P., and Fortuna, T. (2017). Antioxidant properties of apple slices stored in starch-based films. Int. J. Food Prop. 20 (5): 1117–1128.
126 126 Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., and Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63 (February): 488–495.
127 127 Hassan, B., Chatha, S.A.S., Hussain, A.I. et al. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int. J. Biol. Macromol. 109: 1095–1107.
128 128 Cazón, P., Velazquez, G., Ramírez, J.A., and Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68: 136–148.
129 129 Sothornvit, R. and Krochta, J.M. (2005). Plasticizers in edible films and coatings. Innov. Food Packag.: 403–433.
130 130 Santacruz, S., Rivadeneira, C., and Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocolloids 49: 89–94.
131 131 Podshivalov, A., Zakharova, M., Glazacheva, E., and Uspenskaya, M. (2017). Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr. Polym. 157: 1162–1172.
132 132 Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M. et al. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids 52: 906–913.
133 133 Masood, F. (2017). Polyhydroxyalkanoates in the food packaging industry. In: Nanotechnology Applications in Food (eds. A.E. Oprea and A.M. Grumezescu), 153–177. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811942-6.00008-X.
134 134 Steinbüchel, A. and Lütke-eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81–96.
135 135 Costa, J.A.V., Moreira, J.B., Lucas, B.F. et al. (2018). Recent advances and future perspectives of PHB production by cyanobacteria. Ind. Biotechnol. 14 (5): 249–256.
136 136 Favaro, L., Basaglia, M., Casella, S., and Food, A. (2018). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: areview. Biofuels, Bioprod. Biorefin.: 1–20.
137 137 Rodriguez-Perez, S., Serrano, A., Pantión, A.A., and Alonso-Fariñas, B. (2018). Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manage. 205: 215–230.
138 138 Costa, S.S., Miranda, A.L., de Morais, M.G. et al. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — a review. Int. J. Biol. Macromol. 131: 536–547. https://doi.org/10.1016/j.ijbiomac.2019.03.099.
139 139 Pavan, F.A., Junqueira, T.L., Watanabe, M.D.B. et al. (2019). Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem. Eng. J. 146: 97–104. https://doi.org/10.1016/j.bej.2019.03.009.
140 140 Rosa, D.S., Lotto, N.T., Lopes, D.R., and Guedes, C.G.F. (2004). The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Test. 23: 3–8.
141 141 Koller, M. (2014). Poly(hydroxyalkanoates) for food packaging: application and attempts towards implementation. Appl. Food Biotechnol. 1 (1): 3–15.
142 142 Fukada, E. and Ando, Y. (1986). Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate. Int. J. Biol. Macromol. 8: 361–366.
143 143 Khosravi-darani, K. and Bucci, D.Z. (2015). Application of poly(hydroxyalkanoate) in Food packaging: improvements by nanotechnology. Chem. Biochem. Eng. 29 (2): 275–285.
144 144 Xu, P., Yang, W., Niu, D. et al. (2020). Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem. Eng. J. 382: 122864. https://doi.org/10.1016/j.cej.2019.122864.
145 145 Miguel, R., Júnior, S., Araújo, T. et al. (2019). Thermal behavior of biodegradable bionanocomposites: influence of bentonite and vermiculite clays. J. Mater. Res. Technol. 8 (3): 3234–3243. https://doi.org/10.1016/j.jmrt.2019.05.011.
146 146 Arrieta, M.P., Alberto, D., Daniel, L. et al. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials 9 (346): 1–14.
147 147 Urbina, L., Eceiza, A., Gabilondo, N. et al. (2019). Valorization of apple waste for active packaging: multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packag. Shelf Life 21: 100356. https://doi.org/10.1016/j.fpsl.2019.100356.
148 148 Sängerlaub, S., Brüggemann, M., Rodler, N. et al. (2019). Extrusion coating of paper with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)—packaging related functional properties. Coatings 457: 1–28.
149 149 Panaitescu, D.M., Ionita, E.R., Nicolae, C. et al. (2018). Poly(3-hydroxybutyrate) modified by nanocellulose and plasma treatment for packaging