17 Fernie, A.R., Carrari, F., and Sweetlove, L.J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7: 254–261.
18 Finazzi, G., Petroutsos, D., Tomizioli, M. et al. (2015). Ions channels/transporters and chloroplast regulation. Cell Calcium 58: 86–97.
19 Flowers, T.J. (1972). Salt tolerance in Suaeda maritima (L.) dum: the effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Bot. 23: 310–321.
20 Flowers, T.J. and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179: 945–963.
21 Flowers, T.J., Troke, P.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.
22 Flowers, T.J., Munns, R., and Colmer, T.D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.
23 Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G. (2004). Rapid and tissue‐specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 55: 1115–1123.
24 Gallagher, J.L. (1985). Halophytic crops for cultivation at seawater salinity. Plant Soil 89: 323–326.
25 Galvan‐Ampudia, C.S., Julkowska, M.M., Darwish, E. et al. (2013). Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23: 2044–2050.
26 Ghosh, S., Bagchi, S., and LahiriMajumder, A. (2001). Chloroplast fructose‐1,6‐bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 160: 1171–1181.
27 Glenn, E.P., O’Leary, J.W., Watson, M.C. et al. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065–1067.
28 Glenn, E.P., Brown, J.J., and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. CRC Crit. Rev. Plant Sci. 18: 227–255.
29 Glenn, E.P., Mckeon, C., Gerhart, V. et al. (2009). Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landsc Urban Plan 89: 57–64.
30 Hamilton, E.W. and Heckathorn, S.A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti‐oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 126: 1266–1274.
31 He, Y., Fu, J., Yu, C. et al. (2015). Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 66: 6877–6889.
32 Hedrich, R. and Shabala, S. (2018). Stomata in a saline world. Curr. Opin. Plant Biol. 46: 87–95.
33 Hernández, J.A., Olmos, E., Corpas, F.J. et al. (1995). Salt‐induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105: 151–167.
34 Hong, M., Li, N., Li, J. et al. (2019). Adenosine monophosphate‐activated protein kinase signaling regulates lipid metabolism in response to salinity stress in the red‐eared slider turtle Trachemys scripta elegans. Front. Physiol. 10: 1–11.
35 Ishikawa, T., Cuin, T.A., Bazihizina, N., and Shabala, S. (2018). Xylem ion loading and its implications for plant abiotic stress tolerance. Adv. Bot. Res. 87: 267–301.
36 Jacoby, R.P., Taylor, N.L., and Millar, A.H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16: 614–623.
37 Jajoo, A., Dube, A., and Bharti, S. (1994). Mg2+‐induced lipid phase transition in thylakoid membranes is reversed by anions. Biochem. Biophys. Res. Commun. 202: 1724–1730.
38 Jajoo, A., Bharti, S., and Kawamori, A. (2005). Interactions of chloride and formate at the donor and the acceptor side of photosystem II. J. Bioenerg. Biomembr. 37: 49–54.
39 Jeschke, W.D., Wolf, O., and Hartung, W. (1992). Effect of NaCI salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lupinus albus L. J. Exp. Bot. 43: 777–788.
40 Jha, A., Joshi, M., Yadav, N.S. et al. (2011). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Biol. Rep. 38: 1965–1973.
41 Jordan, F.L., Yoklic, M., Morino, K. et al. (2009). Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district. Agric. For. Meteorol. 149: 899–912.
42 Kant, S., Kant, P., Raveh, E., and Barak, S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyteproline and tight control of Na+ uptake in T. halophila. Plant Cell Environ. 29: 1220–1234.
43 Kazachkova, Y., Batushansky, A., Cisneros, A. et al. (2013). Growth platform‐dependent and ‐independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress. Plant Physiol. 162: 1583–1598.
44 Kim, D.W., Rakwal, R., Agrawal, G.K. et al. (2005). A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26: 4521–4539.
45 Kinnersley, A.M. and Turano, F.J. (2010). Gamma Aminobutyric Acid (GABA) and plant responses to stress. CRC Crit. Rev. Plant Sci. 2689: 37–41.
46 Kirchhoff, H., Hall, C., Wood, M. et al. (2011). Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. U. S. A. 108: 20248–20253.
47 Kosova, K., Prasil, I.T., and Vitamvas, P. (2013). Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14: 6757–6789.
48 Kumari, N., Malik, K., Rani, B. et al. (2019). Insights in the physiological, biochemical and molecular basis of salt stress tolerance in plants. In: Microorganisms in Saline Environments: Strategies and Functions (eds. B. Giri and A. Verma), 353–374. Switzerland: Springer Nature.
49 Lambers, H., Chapin, F.S., and Pons, T.L. (2008). Respiration. In: Plant Physiological Ecology, 2e, 101–150. New York: Springer.
50 Mishra, A. and Tanna, B. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 8: 1–10.
51 Mitsuya, S., El‐Shami, M., Sparkes, I.A. et al. (2010). Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCI tolerance in Arabidopsis thaliana. PLoS One 5: e9408.
52 Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
53 Munns, R., Guo, J., Passioura, J.B., and Cramer, G.R. (2000). Leaf water status controls day‐time but not daily rates of leaf expansion in salt‐treated barley. Aust. J. Plant Physiol. 27: 949–957.
54 Munns, R., James, R.A., Xu, B. et al. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30: 360–364.
55 Munns, R., Day, D.A., Fricke, W. et al. (2020). Energy costs of salt tolerance in crop plants. New Phytol. 225: 1072–1090.
56 Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochem.Biophys. Acta. ‐ Bioenerg. 1767: 414–421.
57 Ondrasek, G., Rengel, Z., and Veres, S. (2011). Soil salinisation and salt stress in crop production. In: Abiotic Stress in Plants ‐ Mechanisms and Adaptations (ed. A. Shanker), 171–190. Croatia: InTech.
58 Pagliano, C., La Rocca, N., Andreucci, F. et al. (2009). The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen‐evolving complex without loss of functional activity. Ann. Bot. 103: 505–515.
59 Panta, S., Flowers, T., Lane, P. et al. (2014). Halophyte agriculture: success stories. Environ. Exp. Bot. 107: 71–83.
60 Panta,