Physiology of Salt Stress in Plants. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9781119700494
Скачать книгу
minimal ability to increase the ATP production during stress, and increasing salt ions further suppresses the activity of the complex I and complex II of the mtETC (Jacoby et al. 2011). The negative membrane potential of the mitochondrial membrane assisted the intake of Na+ to the mitochondria (Che‐Othman et al. 2017), of which excess accumulation inhibits the mtETC by denaturing the proteins of the mtETC complexes or by disassembly of the complexes (Flowers 1972). At the moderate or lower salt stress in glycophytes, the ATP synthase activity increased without affecting different subunits of the ATP synthase. However, the ATP synthase subunits decreased significantly at higher salt stresses (Kosova et al. 2013). Due to presence of alternative mtETC pathways like NAD(P)H‐dehydrogenases, and alternative oxidase (AOX), the ETC is more complex and flexible in mitochondria (Jacoby et al. 2011). Suppression or inhibition of the mtETC negatively impacts the oxidative phosphorylation and ATP production. Moreover, the altered mtETC facilitates the electron's leakage to the free oxygen molecule and produces an excess amount of the ROS. However, the ionic component of the salt stress is more deleterious to the mtETC than the osmotic, affecting the NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) activity (Hamilton and Heckathorn 2001). Two competing respiratory chains in plant mitochondria help plants maintain the mtETC up to some extent in moderate salt stress. When salt stress inhibits the cytochrome‐mediated respiratory chain activity, the AOX‐mediated chain remains unaffected (Jacoby et al. 2011) and provides metabolic adjustment to the mitochondria at low or moderate salt stress.

      2.4.3 Peroxisome Functioning

Schematic illustration depicting the comparison of ion homeostasis and physiological changes in glycophytes and halophytes during salt stress.

      Source: Modified from (Bose et al. 2017; Zhao et al. 2020)

      .

      2.5.1 Ion Homeostasis in a Halophyte

      The halophytes maintain better cellular ionic homeostasis by efficient Na+ exclusion and vacuolar sequestration, xylem loading and retrieval of the Na+, minimized recirculation of Na+ through the phloem tissue, and secretion of salts through the salt gland and EBCs (Zhao et al. 2020). The constitutively expressing plasma membrane Na+/H+ antiporter SOS1 in halophytes performs the task of Na+ extrusion out of the cell more efficiently than the glycophytes (Shi et al. 2002). The sequestration of the Na+ and Cl in the vacuole of root and leaf cells of halophytes are facilitated by constitutively expressing Na+/H+ antiporter (NHX), vacuolar H+‐inorganic pyrophosphatase (V‐PPase), and vacuolar H+‐ATPase (V‐ATPase) (Jha et al. 2011). However, to avoid the leakage of the ions through Na+ permeable channels, slow‐ (SV) and fast‐ (FV) activating ion channels, halophytes minimize their activity (Shabala et al. 2020). This efficient sequestration avoids the toxicity of ions on cytoplasmic physiology and also requires less organic osmolytes to adjust the osmotic balance between the cytoplasm and vacuole. The cytoplasm contributes only 10% of the cell volume, and thus halophytes spend relatively very less energy for cytoplasmic osmotic adjustment in comparison with glycophytes in osmolytes biosynthesis (Zhao et al. 2020).

      The excess Na+ in the root cortical or parenchyma cell is then loaded to the xylem vessels by NCCS, SOS1, HKT2, or CCC (Ishikawa et al. 2018; Shi et al. 2002) for dilution of the salt ions in the root cells. However, to avoid the ionic imbalance in the photosynthetically active shoot tissues, plants attempt to retrieve back the Na+ from the xylem vessel to the root cells for extrusion. The transporters of HKT1 family retrieve the Na+ from xylem vessel to the root cells and from leaves to the phloem (Munns et al. 2012; van Zelm et al. 2020). Interestingly, the model plant species A. thaliana contains only one gene encoding for the HKT1 in their genome. Whereas, its close halophytic relative E. salsugineum has five genes encoding proteins belonging to the HKT1 family (Wu et al. 2012) suggesting the better Na+ retrieval strategy in the halophytes. However, the anatomical structure of the root very unlikely allows the unloading of the Na+ coming from the shoot tissue through the phloem which remained circulated in the phloem and ultimately creates damage to the young growing tissues and meristematic region (Zhao et al. 2020). The additional checkpoint in halophytes minimizes the damage of the young meristematic tissues by reducing the Na+ retrieval in the phloem tissue. A comparative analysis revealed that barley allows only 10% of the shoot Na+ retrieval to the phloem, whereas in a salinity‐sensitive lupin species, the retrieval rate was 50% of the shoot Na+ concentration (Jeschke et al. 1992). Here then, the question arises, if halophytes are not recirculating their excess Na+ in the shoot through the phloem, then how can they establish the ionic homeostasis in the shoot tissue? The answer to this question emerged from the study on the halophytes, which revealed the development of salt gland or bladder in approximately 50 species of the halophytes (Zhao et al. 2020), playing a role in sequestering the Na+ and Cl away from the metabolically active cells and secreting them when accumulates in access. These unique structural developments in halophytes with yet unknown mechanisms showed structural and functional variation among themselves. The exo‐recretohalophytes have the salt gland on the leaves’ surface, while