Smith's Elements of Soil Mechanics. Ian Smith. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ian Smith
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Отраслевые издания
Год издания: 0
isbn: 9781119750413
Скачать книгу
envelope for a saturated cohesive soil subjected to an un...Fig. 4.38 Strength envelope for a normally consolidated clay subjected to a ...Fig. 4.39 Strength envelope for an overconsolidated soil subjected to a drai...Fig. 4.40 Typical results from consolidated undrained shear tests on saturat...Fig. 4.41 Relationship between N and ϕ′.Fig. 4.42 The peak, critical, and residual strengths of clays.Fig. 4.43 Ring shear test sample.Fig. 4.44 Stress–displacement characteristics of sands.

      5 Chapter 5Fig. 5.1 Points of maximum shear stress.Fig. 5.2 Typical effective stress paths obtained from consolidated undrained...Fig. 5.3 Example 5.1.Fig. 5.4 Example 5.2.Fig. 5.5 Example 5.3.Fig. 5.6 Typical shape of the isotropic normal consolidation curves of a sat...Fig. 5.7 Idealised form of v : ln p' plot.Fig. 5.8 Isotropic and one‐dimensional consolidation.Fig. 5.9 Test paths for a drained compression test in the triaxial apparatus...Fig. 5.10 Stress paths for drained shear.Fig. 5.11 Test paths for an undrained compression test in the triaxial appar...Fig. 5.12 Stress paths for undrained shear.Fig. 5.13 Projection of the critical state line.Fig. 5.14 Position of the critical state line.Fig. 5.15 v : ln

plot.Fig. 5.16 Path followed by an undrained test in q' : p' : v space.Fig. 5.17 Path followed by a drained test in q' : p' : v space.Fig. 5.18 Path followed by a drained test in q' : p' space.Fig. 5.19 Four undrained paths in q' : p' : v space.Fig. 5.20 Two drained paths in q' : p' : v space.Fig. 5.21 The Roscoe surface.Fig. 5.22 Example 5.7.Fig. 5.23 Undrained stress paths of overconsolidated clay.Fig. 5.24 The overall state boundary surface.Fig. 5.25 The overall state boundary surface.Fig. 5.26 The Hvorslev surface.

      6 Chapter 6Fig. 6.1 Eurocodes timeline.Fig. 6.2 Contents of Eurocode 7 (EN 1997) Parts 1 and 2.Fig. 6.3 Processes involved in geotechnical design by calculation.Fig. 6.4 ISO International and Technical Standards.Fig. 6.5 General framework for the selection of derived values of geotechnic...Fig. 6.6 Limit states for earth retaining structures. (a) Overtuning – rigid...Fig. 6.7 (a) Uplift of a buried hollow structure. (b) Example where heave ma...Fig. 6.8 Verification of EQU limit state for stability.Fig. 6.9 Example 6.3.Fig. 6.10 Verification of GEO limit state for strength.Fig. 6.11 Example 6.4.Fig. 6.12 Redistribution of content from first to second generations.Fig. 6.13 Key stages in the design and construction of a geotechnical struct...Fig. 6.14 Example 6.7.

      7 Chapter 7Fig. 7.1 Minimum depths of investigation points for various structures. Symb...Fig. 7.2 Hand augers: (a) clay auger; (b) gravel auger; (c) 38 mm undisturbe...Fig. 7.3 Cable percussion boring.Fig. 7.4 Cable percussion cutting tools and samplers.Fig. 7.5 Rotary drilling rig.Fig. 7.6 Rotary drilling bits: (a) cutting bit; (b) double‐tube core barrel....Fig. 7.7 Cable percussion equipment to obtain undisturbed samples: (a) stand...Fig. 7.8 Thin‐walled stationary piston sampler.Fig. 7.9 Ground water level observation in a borehole: (a) standpipe; (b) Ca...Fig. 7.10 Closed piezometer systems: (a) hydraulic system; (b) pneumatic sys...Fig. 7.11 Plots of cone resistance, sleeve friction and pore pressure with d...Fig. 7.12 Standard penetration test sampler.Fig. 7.13 Example 7.3.Fig. 7.14 Pressuremeter test.Fig. 7.15 Field vane test.Fig. 7.16 Borehole log.

      8 Chapter 8Fig. 8.1 Vertical and lateral stresses.Fig. 8.2 Active and passive states.Fig. 8.3 Active and passive earth pressures.Fig. 8.4 Active pressure for a cohesionless soil with a horizontal upper sur...Fig. 8.5 Active pressure for a cohesionless soil with its surface sloping up...Fig. 8.6 Point of application of total active thrust (Rankine theory).Fig. 8.7 Example 8.2. (a) The problem. (b) Pressure distribution (kPa).Fig. 8.8 Example 8.3. (a) The problem. (b) Earth pressure (kPa). (c) Water p...Fig. 8.9 Passive earth pressure for a cohesionless soil with a horizontal up...Fig. 8.10 The effect of cohesion on active pressure.Fig. 8.11 Active pressure diagram for a soil with both cohesive and friction...Fig. 8.12 Example 8.4.Fig. 8.13 Example 8.4: Pressure distributions (not to scale).Fig. 8.14 Wedge theory for cohesionless soils.Fig. 8.15 Symbols used in Coulomb's formula.Fig. 8.16 Consideration of the effects of cohesion.Fig. 8.17 Determination of line of action Pa.Fig. 8.18 Departure of passive failure surface from a plane.Fig. 8.19 Effect of uniform surcharge on a retaining wall.Fig. 8.20 Example 8.8. (a) The problem. (b) Pressure distribution (kPa).Fig. 8.21 Example 8.9.Fig. 8.22 Lateral earth pressure due to line load.Fig. 8.23 Compaction induced lateral pressure.Fig. 8.24 Use of granular material in retaining wall construction.Fig. 8.25 Common drainage systems for retaining walls. (a) Weepholes only. (...Fig. 8.26 Seepage forces behind a retaining wall with a vertical drain durin...Fig. 8.27 Effect of an inclined drain on seepage forces.Fig. 8.28 Example 8.10.Fig. 8.29 Influence of wall yield on pressure distribution. (a) Wall unable ...Fig. 8.30 Relationship between N and ϕ'.Fig. 8.31 Exercise 8.3.

      9 Chapter 9Fig. 9.1 Types of reinforced concrete retaining walls. (a) Cantilever wall. ...Fig. 9.2 Moment relief platforms. (a) Typical arrangement. (b) Pressure diag...Fig. 9.3 Crib and gabion walls. (a) Crib wall. (b). Gabion wall.Fig. 9.4 The construction stages of a diaphragm wall. (a) Trench dug. (b) Re...Fig. 9.5 Examples of limit modes for overall stability of retaining structur...Figure 9.6 Examples of limit modes for foundation failures of gravity walls ...Fig. 9.7 Examples of limit modes for rotational failures of embedded walls (...Fig. 9.8 Forces and lever arms: gravity retaining wall.Fig. 9.9 Shear key beneath retaining wall.Fig. 9.10 Bearing pressures due to a retaining wall foundation. (a) Within m...Fig. 9.11 Coefficients Ka (horizontal component) for horizontal retained sur...Fig. 9.12 Example 9.1. (a) Retaining wall. (b) Earth pressure diagram (DA1‐1...Fig. 9.13 Example 9.3. (a) Wall geometry. (b) Pressure distributions.Fig. 9.14 Example 9.3: vertical forces.Fig. 9.15 Pressure distribution on sheet pile wall. (a) Wall geometry. (b) G...Fig. 9.16 Example 9.5. (a) Wall geometry. (b) Pressure distribution. (c) Sim...Fig. 9.17 Example 9.5. (a) Wall geometry. (b) Pressure distribution.Fig. 9.18 Free earth support method for anchored sheet piled walls. (a) Anch...Fig. 9.19 Anchorage systems for sheet pile walls. (a) Anchor block. (b) Para...Fig. 9.20 Example 9.6 part (a). (a) Wall geometry. (b) Pressure distribution...Fig. 9.21 Example 9.6 part (b). (a) Wall geometry. (b) Pressure distribution...Fig. 9.22 Granular soils: water pressures. (a) Flow net. (b) Simplified dist...Fig. 9.23 Example 9.7. (a) Simplified water pressure distribution. (b) Net w...Fig. 9.24 Trench support systems: (a) vertical shores with hydraulic rams, (...Fig. 9.25 Pressure distribution in strutted excavation. (a) Traditional side...Fig. 9.26 Typical reinforced soil retaining wall.Fig. 9.27 Construction stages of a soil nailed wall.Fig. 9.28 Exercise 9.1.Fig. 9.29 Exercise 9.2.

      10 Chapter 10Fig. 10.1 Earth pressure conditions immediately below a foundation.Fig. 10.2 Foundation failure rotation about one edge.Fig. 10.3 Cohesion of end sectors.Fig. 10.4 Location of centre of critical circle for use with Fellenius' meth...Fig. 10.5 General shear failure.Fig. 10.6 Terzaghi's bearing capacity coefficients.Fig. 10.7 Variation of the coefficient Nc with depth.Fig. 10.8 Effective widths and area.Fig. 10.9 Strip foundation with inclined load.Fig. 10.10 Example 10.6.Fig. 10.11 Example 10.7.Fig. 10.12 Example 10.8.Fig. 10.13 Typical plate loading test results.Fig. 10.14 Example 10.11.Fig. 10.15 Allowable bearing pressure from the standard penetration test....

      11 Chapter 11Fig. 11.1 Classification of piles. (a) End bearing. (b) Friction. (c) Combin...Fig. 11.2 Pile driving rig.Fig. 11.3 Driven and cast‐in‐place pile installation.Fig. 11.4 Installation of a Franki pile.Fig. 11.5 Maintained load test. (a) Static weights. (b) Jack reaction force ...Fig. 11.6 Variation of bearing capacity factor Nq with angle of shearing res...Fig. 11.7 Example 11.2.Fig. 11.8 Typical results from a cone penetration test.Fig. 11.9 Group action of piles. (a) Single pile bulb of pressure. (b) Adjac...Fig. 11.10 Pile group arrangement – end‐bearing piles.Fig. 11.11 Transfer of load in friction piles.Fig. 11.12 Example 11.5: maintained load test results.Fig. 11.13 Example 11.8: maintained load tests results.Fig. 11.14 Example 11.8.Fig. 11.15 Tensile and transverse loadings in piles. (a) Resistance through ...

      12 Chapter 12Fig. 12.1 Compressive deformation. (a) Immediate settlement. (b) Consolidati...Fig. 12.2 Immediate settlement of thin clay layer. (a) Thin clay layer (H < ...Fig. 12.3 Example 12.2. (a) The problem. (b) Area split into rectangles.Fig. 12.4 Variation of Iz with depth.Fig. 12.5 Part (a): (a) N to z relationship; (b) chosen layers.Fig. 12.6 Part (b): (a) Cr to z relationship; (b) variation of Iz.Fig. 12.7 The consolidation test. (a) Consolidation apparatus. (b) Typical t...Fig. 12.8 Void ratio to effective pressure curves. (a) Typical e–p curve. (b...Fig. 12.9 Example 12.4. (a) e‐p plot. (b) H‐p plot.Fig. 12.10 e–p and e–log p curves for natural consolidation and for a normal...Fig. 12.11 Compression curves