Spectroscopy for Materials Characterization. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119698050
Скачать книгу
ω 0 = 2.112 eV and plotted as a function of the distance from the laser line ω 0. The laser lineshape, acquired by the scattered light, is also shown arbitrarily scaled respect to the emission spectrum.

Si─O─)3Si─O to complete the description with the vibrational properties of the excited electronic state. Figure 2.12 shows the spectrum obtained under excitation at E exc = 2.112 eV, where no resonant luminescence appears. In contrast, a sharp line is detected at lower energies, shifted by 920 ± 3 cm−1 from the excitation; the accuracy being determined by the preliminary detection of the scattered laser line shown in the same figure. This sharp line is the off‐resonance ZPL that, in agreement with Figure 2.2, is excited through the vibrational level 1 of the excited electronic state. Then, the value of 920 ± 3 cm−1 is the measure of the frequency ω e of the surface Si─O stretching in the excited electronic state that is almost coincident with that in the ground electronic state. This finding demonstrates the validity of the linear coupling between the optical transition around 2.0 eV and the localized mode. Moreover, on the basis of the reduced mass of the Si─O molecule (m * = 1.692 × 10−26 kg), it is possible to calculate the force constant of Si─O bond at the surface: k = (ω surf)2m *≈ 508 N m−1.

Si─O─)3Si─O at the silica surface. Indeed, the inhomogeneity is related to the structural disorder of the silica network in the long‐ and local‐range in comparison with the SiO4 tetrahedron size. The first is intrinsic to the amorphous state, and is mainly accounted for by the statistical distribution of the Si─O─Si bond angle and the size of (Si─O)n ring structure [30, 31]. The second is due to the presence of point defects that introduce a local distortion into the surroundings, such distortion being dependent on the site [11].

Schematic illustration of panel (a): Time-resolved PL spectra of surface-NBOHC, measured at T = 10 K, in the ZPL region at different excitation energies from 1.89 to 2.08 eV with step 0.01, 0.006 and 0.003 eV. Panel (b): Distribution of the ZPL intensity, obtained by the spectra reported in the panel (a) (symbols), superimposed to its Gaussian best fit curve.
Si─O─)3Si─O, measured at T = 10 K, in the ZPL region at different excitation energies from 1.89 to 2.08 eV with step 0.01, 0.006 and 0.003 eV. Panel (b): Distribution of the ZPL intensity, obtained by the spectra reported in the panel (a) (symbols), superimposed to its Gaussian best fit curve.

      We observe that the main experimental outcome is the detectability of the ZPL under site‐selective excitation of inhomogeneously distributed centers, thus allowing the inhomogeneous curve to be drawn directly. The detection of the ZPL is therefore a probe of the silica structure near the NBOHC; this potential is precluded for other defects in silica, because of the stronger phonon coupling of their optical transitions. In those cases, the deconvolution between homogeneous and inhomogeneous broadening can be done only indirectly.

      1 1 Herzberg, G. (1966). Molecular Spectra and Molecular Structure. New York: Van Nostrand Reinhold.

      2 2 Rebane, K.K. (1970). Impurity Spectra of Solids. New York: Plenum Press.

      3 3 Stoneham, A.M. (1975). Theory of Defects in Solids. Oxford: Clarendon Press.

      4 4 Watts, R.K. (1977). Point defects in Crystals. New York: John Wiley & Sons.

      5 5 Yen, W.M. and Selzer, P.M. (eds.) (1981). Laser Spectroscopy of Solids. New York: Springer‐Verlag.

      6 6 Sild, O. and Haller, K. (eds.) (1988). Zero Phonon Lines and Spectral Hole Burning In Spectroscopy and Photochemistry. New York: Springer‐Verlag.

      7 7 Vij, D.R. (ed.) (1998). Luminescence of Solids. New York: Plenum Press.

      8 8 Franck, E.G. and Dymond, E.G. (1926). Trans. Faraday Soc. 21: 536.

      9 9 Condon, E.U. (1928). Phys. Rev. 32: 858.

      10 10 Cannas, M. (1998). Point defects in amorphous SiO2: optical activity in the visible, UV and vacuum‐UV spectral regions. PhD thesis, Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.

      11 11 Skuja, L. (2000). Defects in SiO2 and Related Dielectrics: Science and Technology (eds. G. Pacchioni, L. Skuja and D.L. Griscom). USA: Kluwer Academic Publishers.

      12 12 Huang, K. and Rhys, A. (1950). Proc. Roy. Soc. A204: 406.

      13 13 Skuja, L., Hirano, M., Hosono, H., and Kajihara, K. (2005). Phys. Phys. Stat. Sol. (c) 2: 15.

      14 14 Girard, S., Alessi, A., Richard, N. et al. (2019). Rev. Phys. 4: 100032.

      15 15 Vaccaro, L., Morana, A., Radzig, V., and Cannas, M. (2011). J. Phys. Chem. C 115: 19476.

      16 16 Bonacchi, S., Genovese, D., Juris, R. et al. (2011). Angew. Chem., Int. Ed. 50: 4056.

      17 17 Rimola, A., Costa, D., Sodupe, M. et al. (2013). Chem. Rev. 113: 4216.

      18 18 Carbonaro, C., Corpino, R., Ricci, P. et al. (2014). J. Phys. Chem. C 118: 26219.

      19 19 Tarpani, L., Ruhlandt, D., Latterini, L. et al. (2016). Nano Lett. 16: 4312.

      20 20 Spallino, L., Spera, M., Vaccaro, L. et al. (2014). Phys. Chem. Chem. Phys. 16: 22028.

      21 21 Radzig, V.A. (2000). Defects in SiO2 and Related Dielectrics: Science and Technology. In: (eds. G. Pacchioni, L. Skuja and D.L. Griscom). USA: Kluwer Academic Publishers.

      22 22 Radzig, V.A. (2001). Chem. Phys. Rep. 19: 469.

      23 23 Vaccaro, L., Cannas, M., Radzig, V., and Boscaino, R. (2008). Phys. Rev. B 78: 075421.

      24 24 Vaccaro, L., Cannas, M., and Radzig, V. (2008). Phys. Rev. B 78: 233408.

      25 25 Vaccaro, L., Cannas, M., and Radzig, V. (2009). J. Non Cryst. Solids 355: 1020.

      26 26 Suzuki, T., Skuja, L., Kajihara, K. et al. (2003). Phys. Rev. Lett. 90: 186404.

      27 27 Bakos, T., Rashkeev, S.N., and Pantelides, S.T. (2004). Phys. Rev. B 70: 075203.

      28 28 Giordano, L., Sushko, P.V., Pacchioni, G., and Shluger, A.L. (2007). Phys. Rev. B 75: 024109.

      29 29 Vaccaro, L. and Cannas,