Определите номера пунктов, соответствующих пунктам З и Ж на графе. В качестве ответа запишите два числа в порядке возрастания без разделителей – найденные номера.
Решение:
Пункт К соединяется с вершинами Г (4 вершины) и В (4 вершины). П8 соединяется как раз с двумя вершинами П1 и П2, каждая из которых имеет по 4 дороги, значит, П8=К. Т. к. П8 соединяется с П1 и П2 имеет четыре вершины, то можно предположить, что П1=В, а П2=Г. П1 соединяется с П5, и т. к. П5 имеет 2 вершины, то П5=З. Ранее выяснили, что П2=Г и П2 пересекается с П3, которая имеет 2 вершины, значит, П3=Ж.
Ответ: 35.
Задачи для самостоятельного решения
Задача 1.4
На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта А в пункт В, если передвигаться можно только по указанным дорогам. В ответе запишите целое число – длину пути в километрах.
Задача 1.5
На рисунке схема дорог изображена в виде графа, в таблице звёздочками обозначено наличие дороги между населёнными пунктами.
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Выпишите последовательно без пробелов и знаков препинания, указанные на графе буквенные обозначения пунктов от П1 до П8: сначала букву, соответствующую П1, затем букву, соответствующую П2, и т. д.
Глава 2. Алгебра логики и базы данных
Задание №2. Алгебра логики
Алгебра логики или булева алгебра – так их называют. Как вы думаете, для чего вообще нужна алгебра логики, кроме как мучить детей? Представьте, что по проводу течет ток. Если ток есть в проводе, то обозначим это действие за 1, т.е. истина. Если же тока нет, то ноль, т.е. ложь. Сборка различных схем на компьютере осуществляется как раз схемами, которые представлены на рис.1.
Рисунок №1
Причем можно усложнить схемы, сделать их большими и громоздкими. В компьютере, понятное дело, используются большие логические схемы взаимодействий. Учить это не хочется, но важно понять, как это работает. Для этого и придумали алгебру логики. Какая бы сложная схема ни получилась, ее всегда можно упростить до двух проводов, далее буду говорить до 2 переменных, на языке алгебры логики. Высказывание – повествовательное предложение, о котором можно сказать, истинно оно или ложно. В алгебре простым высказываниям ставятся в соответствии логические переменные (А, В, С и т.д.). Пример высказываний:
Рисунок №2
Логическая