Computational Analysis and Deep Learning for Medical Care. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Программы
Год издания: 0
isbn: 9781119785736
Скачать книгу
in the future based on the location and the movement of the public, the AI will predict what kind of activity is going in that location also will predict.

      1. Baeza-Yates, R., Hurtado, C., Mendoza, M., Query recommendation using query logs in search engines, in: EDBT, pp. 588–596, 2004.

      2. Beeferman, D. and Berger, A., Agglomerative clustering of a search engine query log, in: KDD, pp. 407–416, 2000.

      3. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H., Context-aware query suggestion by mining click-through and session data, in: KDD, pp. 875–883, 2008.

      4. Qi, S., Wu, D., Mamoulis, N., Location aware keyword Query suggestion based on document proximity. IEEE Trans. Knowl. Data Eng., 28, 1, 82–97, 2016.

      5. Berkhin, P., Bookmark-coloring algorithm for personalized pagerankcomputing. Internet Math., 3, 41–62, 2006.

      6. Craswell, N. and Szummer, M., Random walks on the click graph, in: Proc. 30th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 239–246, 2007.

      7. Mei, Q., Zhou, D., Church, K., Query suggestion using hitting time, in: Proc. 17th ACM Conf. Inf. Knowl. Manage, pp. 469–478, 2008.

      8. Song, Y. and He, L.-W., Optimal rare query suggestion with implicit user feedback, in: Proc. 19th Int. Conf. World Wide Web, pp. 901–910, 2010.

      9. Miyanishi, T. and Sakai, T., Time-aware structured query suggestion, in: Proc. 36th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 809–812, 2013.

      10. Tong, H., Faloutsos, C., Pan, J.-Y., Fast random walk withrestart and its applications, in: Proc. 6th Int. Conf. Data Mining, pp. 613–622, 2006.

      11. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S., The query-flow graph: Model and applications, in: Proc. 17thACM Conf. Inf. Knowl. Manage, pp. 609–618, 2008.

      12. Song, Y., Zhou, D., He, L.-w., Query suggestion by constructing term-transition graphs, in: Proc. 5th ACM Int. Conf. Web Search Data Mining, pp. 353–362, 2012.

      13. Kato, M.P., Sakai, T., Tanaka, K., When do people use query suggestion? A query suggestion log analysis. Inf. Retr., 16, 6, 725–746, 2013.

      14. Liu, Y., Song, R., Chen, Y., Nie, J.-Y., Wen, J.-R., Adaptive query suggestion for difficult queries, in: Proc. 35th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 15–24, 2012.

      15. Zhang, Z. and Nasraoui, O., Mining search engine query logs for query recommendation, in: Proc. 15th Int. Conf. World Wide Web, pp. 1039–1040, 2006.

      16. Cucerzan, S. and White, R.W., Query suggestion based on user landing pages, in: Proc. 30th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 875–876, 2007.

      17. J. Myllymaki, D. Singleton, A. Cutter, M. Lewis, S. Eblen, Location based query suggestion. U.S. Patent 8 301 639, Oct. 30, 2012.

      18. Gaasterland, T., Cooperative answering through controlled query relaxation. IEEE Expert, 12, 5, 48–59, Sep. 1997.

      19. Song, Y., Zhou, D., He, L.-w., Post-ranking query suggestion by diversifying search results, in: Proc. 34th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 815–824, 2011.

      20. Zhu, X., Guo, J., Cheng, X., Du, P., Shen, H.-W., A unified framework for recommending diverse and relevant queries, in: Proc. 20th Int. Conf. World Wide Web, pp. 37–46, 2011.

      21. Wen, J.-R., Nie, J.-Y., Zhang, H.-J., Clustering user queries of asearch engine, in: Proc. 10th Int. Conf. World Wide Web, pp. 162–168, 2001.

      22. Dhillon, I.S., Co-clustering documents and words using bipartite spectral graph partitioning, in: Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 269–274, 2001.

      23. Pass, G., Chowdhury, A., Torgeson, C., A picture of search, in: Proc. 1st Int. Conf. Scalable Inf. Syst, 2006.

      24. Bhatia, S., Majumdar, D., Mitra, P., Query suggestions in the absence of query logs, in: Proc. Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 795–804, 2011.

      25. Baeza-Yates, R. and Tiberi, A., Extracting semantic relations from query logs, in: Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 76–85, 2007.

      26. http://www.statisticbrain.com/google-searches

      27. Salton, G., A theory of indexing, vol. 18, SIAM, New York, 1975.

      28. Emtage, A., Archie: An electronic directory service for the internet. Proc. Winter 1992 USENIX Conf., 1992.

      29. Smith, R.G. and Farquhar, A., The road ahead for knowledge management: an AI perspective. AI Mag., 21, 4, 17–17, 2000.

      30. Ghafghazi, H. et al., Location-aware authorization scheme for emergency response. IEEE Access, 4, 4590–4608, 2016.

      31. Tyagi, A.K. and Chahal, P., Artificial Intelligence and Machine Learning Algorithms, in: Challenges and Applications for Implementing Machine Learning in Computer Vision, pp. 188–219, IGI Global, Chennai, India, 2020.

      1 *Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAOEAjUDAREA AhEBAxEB/8QAHwAAAAQHAQAAAAAAAAAAAAAAAAIJCgEDBAUGBwgL/8QAiBAAAQMDAgQDAwcHAwgN EwInAQIDBAUGEQchAAgSMQlBURNhcQoUFSKBkaEWIzKxwdHwF0LhGBkkM1JT0vElJicoN0NUYnKT lLK3Gik0NTY4OURHVVdYY3N3eJKztkVIVmd0dXaChKK109YqRmRmlZaXtMLV12iDhYaHmKOlp8PF SmWkpsfU/8QAHgEAAQQDAQEBAAAAAAAAAAAAAAEFBgcCAwQICQr/xABxEQABAwIFAQQFBgYKCwoL ABMBAgMEBREABhIhMUEHE1FhFCJxgZEIFTKhsfAjM0JSwdEWJDQ1U3KSs+HxGCVDVGJzdIKTstIm NkRVY5SitNPUCRdFRlZXZIOElaPCdZakJzh2hbXEN0dld4a2w2Zn/9oADAMBAAIRAxEAPwB/Rwz4 6MDgwYHBgwODBgjjiWkKWs4SkZJ/YB5knYDzPGKlJQlS1GyUgkn2Dj2ki2FQlS1BCRdSjYD9PsA3 PgMWF6oyHD+bIaRnYAAqx71EEE+eAAPI578Nbkx5RPdkNp6abFXh6xIPOxtYAfAl6agsoHrjvFdS SQkewC313OCNVR9peHiHW8gHYJWAVdwQACcEEg5B7Ap78Ytz3Urs5d1N99gF7c6SLDx2sB7MI9Ba Wklsd2uxtYkpJ6Ag3sOlxxyQeMGemypyg1FDsaOrP1khPz6UgkpKmUqPREYyCkyXlDO/swop6eHw OMNpQoESXVgKQ2j6CQQCFOKNhbexBsAdiemGfuHVlYX+120KKHHHNvWBtpQBdSlG2wTckEE2G+K+ JTWmUJStKekK6wwkktdfk4+pf15T2dy47hAP6Dae/GpZW8rW8rUQbpQNm0W4sLDUR4nbiyQRfGwO IaSUR0lIN9Tq/wAcu/PBIbSfzU+sR9JR4FyJCQSSAEjJJOAB6k+X79uAkAEkgAAqJOwAHiemNQBJ AAuTsAMULk5Cc9CFLAyMk9I2zuMgkj34GfLPDe5UW0nS2hTg2sskJSfG30lHyJA9+OpERSra1BNx ewGoja4vuAPZc+3FvkTS6WiW+n2KnHAAc9TgaUGRkgEAL/SUO2QfPHGlU1DqmitBQG1lznWCoJIR fZOwUbm+wFzjqai92FjVr7wJTe1iEFae85KiSU3sL7+BHF5joS2wyhJCglpCeoEEKISOpQIyD1Ky cj14dUWCEBJBGkWI3