Парадокс, к сожалению, печально разрешён.
Л. Д. Не совсем так. У матери могут быть другие рассуждения – попробуй ты, Зюл.
Зюл. Женщина убеждена в противоположном:
– Если я сказала правду, ты отдашь мне ребёнка по уговору. Если же я не угадала, что ты не отдашь ребёнка, то ты должен его отдать, иначе сказанное мною не будет неправдой.
Парадокс разрешён в пользу матери.
Л. Д. Что же должен сделать Крокодил?
Дол, Зюл. Обещание внутренне противоречиво, поэтому оно невыполнимо в силу законов логики.
Л. Д. А если бы женщина ответила – ты отдашь мне ребёнка?
Дол, Зюл. Тогда бы не было парадокса!
Л. Д. А ну-ка расскажите, ребята, какие ещё парадоксы вы знаете?
Дол, Зюл. По вашему заданию, учитель, мы познакомились с очень многими логическими и физическими парадоксами: парадокс кучи, парадокс Ахиллеса и Черепахи, парадокс рюмки водки, парадокс всемогущего существа, парадокс лысого[4].
Мы выяснили, что существуют неразрешимые парадоксы и противоречия, но есть и такие, которые легко разрешаются в реальной жизни.
Л. Д. Какой парадокс вам нравится больше всего?
Зюл. Парадокс слуги. «Прикажите слуге не слушаться Вас». Не слушаясь вас, он ослушается приказа, так как он исполняет его, не слушаясь вас.
Дол. Мне нравится парадоксальное высказывание Бернарда[5]: «Не поступай с другим так, как хочешь, чтобы он поступил с тобой, у вас могут быть разные вкусы».
А у вас есть любимый парадокс, учитель?
«Ахиллес никогда не догонит черепаху»
Л. Д. Король неразрешимых парадоксов – высказывание Евбулита из древней Греции: «Я лгу», – торжественно сказал Л. Д., гордо подняв голову. – Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжёт, он говорит правду, и наоборот.
– Ты сказал, вернее – Дол с Зюлом сказали, что бывают разрешимые парадоксы.
– Бывают ли такие высказывания, которые кажутся парадоксальными, но которые можно объяснить? Помнишь, в одном из рассказов мы говорили, что капитан Александр вышел из «неизвестного известного порта»? Определения «известный» и «неизвестный» противоречат друг другу, но оба относятся к одному конкретному порту. Так «известным» был этот порт или «неизвестным»? Порт был известным в том смысле, что о нём многие слышали, но сейчас никто уже не может вспомнить, из какого порта в тот раз вышел на своем корабле капитан Александр. И в этом смысле – порт неизвестен. Как видишь, после соответствующего объяснения, определения приобретают разный смысл, перестают противоречить друг другу и поэтому могут совмещаться.
Таким же образом можно было бы разрешить парадокс брадобрея. Сформулируем его так: «Брадобрею приказали брить всякого, кто сам не