Biomedical Data Mining for Information Retrieval. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Базы данных
Год издания: 0
isbn: 9781119711261
Скачать книгу
Qiu, T., Qiu, J., Feng, J., Wu, D., Yang, Y., Tang, K., Cao, Z., Zhu, R., The recent progress in proteochemometric modelling: Focusing on target descriptors, cross-term descriptors and application scope. Brief Bioinform., 18, 1, 125– 136, 2017.

      99. Jackson, M.J., Esnouf, M.P., Winzor, D., Duewer, D., Defining and measuring biological activity: Applying the principles of metrology. Accredit. Qual. Assur., 12, 6, 283–29, 2007, https://doi.org/10.1007/s00769-006-0254-1.

      100. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., Zhao, S., Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discovery, 18, 6, 463–477, 2019, https://doi.org/10.1038/s41573-019-0024-5.

      101. Sidey-Gibbons, J. and Sidey-Gibbons, C.J., Machine learning in medicine: A practical introduction. BMC Med. Res. Method., 19, 1, 64, 2019, https://doi.org/10.1186/s12874-019-0681-4.

      102. Greene, N., Judson, P.N., Langowski, J.J., Marchantm, C.A., Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ. Res., 10, 2–3, 299–314, 1999.

      103. Raies, A.B. and Bajic, V.B., In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci., 6, 2, 147–172, 2016, https://doi.org/10.1002/wcms.1240.

      104. Patlewicz, G., Jeliazkova, N., Safford, R.J., Worth, A.P., Aleksiev, B., An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res., 19, 5–6, 495–524, 2008.

      105. Agrahari, R., Foroushani, A., Docking, T.R. et al., Applications of Bayesian network models in predicting types of hematological malignancies. Sci. Rep., 8, 6951, 2018, https://doi.org/10.1038/s41598-018-24758-5.

      106. Ahmed, A., Abdo, A., Salim, N., Ligand-based virtual screening using Bayesian inference network and reweighted fragments. Sci. World J., Drug Discovery Today, 01 Jun 2002, 7(11):597–598, 410914, 2012, https://doi.org/10.1016/s1359-6446(02)02316-4.

      107. Madhukar, N.S., Khade, P.K., Huang, L. et al., A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun., 10, 5221, 2019, https://doi.org/10.1038/s41467-019-12928-6.

      108. Hinselmann, G., Rosenbaum, L., Jahn, A., Fechner, N., Ostermann, C., and Zell, A., Large-scale learning of structure–activity relationships using a linear support vector machine and problem-specific metrics. J. Chem. Inf. Model., 51, 2, 203–213, 2011.

      109. Mahé, P. and Vert, J., Graph kernels based on tree patterns for molecules. Mach. Learn., 75, 3–35, 2009, https://doi.org/10.1007/s10994-008-5086-2.

      110. Byvatov, E., Fechner, U., Sadowski, J., Schneider, G., Comparison of support vector machine and artificial neural network systems for drug/non-drug classification. J. Chem. Inf. Comput. Sci., 43, 6, 1882–1889, 2003, https://doi.org/10.1021/ci0341161.

      111. Sakiyama, Y., Yuki, H., Moriya, T. et al., Predicting human liver microsomal stability with machine learning techniques. J. Mol. Graph. Model., 26, 6, 907–915, 2008.

      113. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T., The rise of deep learning in drug discovery. Drug Discovery Today, 23, 6, 1241–1250, 2018.

      114. Marini, F., Roncaglioni, A., Novic, M., Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. J. Chem. Inf. Model., 45, 6, 1507–1519, 2005.

      115. Kazius, J., Nijssen, S., Kok, J.N., Bäck, T., IJzerman, A.P., Substructure Mining Using Elaborate Chemical Representation. J. Chem. Inf. Model., 46, 2, 597– 605, 2006.

      116. Raschka, S., Scott, A.M., Huertas, M., Li, W., Kuhn, L.A., Automated Inference of Chemical Discriminants of Biological Activity. Methods Mol. Biol., 1762, 307–338, 2018.

      117. Ramraj, T. and Prabhakar, R., Frequent Subgraph Mining Algorithms—A Survey. Proc. Comput. Sci., 47, 197–204, 2015, https://doi.org/10.1016/j.procs.2015.03.198.

      118. Mrzic, A., Meysman, P., Bittremieux, W. et al., (Grasping frequent subgraph mining for bioinformatics applications. BioData Min., 11, 20, 2018.

      1 *Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SU8UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAq+L ADhCSU0EJQAAAAAAEDMc1a/wROMgrS8y5yAmDhg4QklNBC8AAAAAAEpGAAEAWAIAAFgCAAAAAAAA AAAAADIZAABWEwAAtf///7X///99GQAAoRMAAAABKAUAAPwDAAABAA8nAQBJAFIARQBTAC4AcABk ADhCSU0D7QAAAAAAEAEsAAAAAQABASwAAAABAAE4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhC SU0EDQAAAAAABAAAAG44QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0E CgAAAAAAAQAAOEJJTScQAAAAAAAKAAEAAAAAAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAA AAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAA AThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////////////////// //////////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////// /////////wPoAAA4QklNBAgAAAAAAEIAAAABAAACQAAAAkAAAAAK///DIAAAAVrgAQABTOEB///R MAAAAA4gAAAA2gAAAAAAAAEAAMsgAAAAAAAAAABrcAA4QklNBB4AAAAAAAQAAAAAOEJJTQQaAAAA AANPAAAABgAAAAAAAAAAAAAK1wAABtAAAAANADkANwA4ADEAMQAxADkANwAxADEAMgA0ADcAAAAB AAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAABtAAAArXAAAAAAAAAAAAAAAAAAAAAAEAAAAA AAAAAAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpjAAAAAQAAAAAA AFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAArX AAAAAFJnaHRsb25nAAAG0AAAAAZzbGljZXNWbExzAAAAAU9iamMAAAABAAAAAAAFc2xpY2UAAAAS AAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAA